
Securing Network Content

Diana Smetters Van Jacobson
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

{smetters,van}@parc.com

1 Introduction
The goal of the current Internet is to provide content

of interest (Web pages, voice, video, etc.) to the users
that need it. Access to that content is achieved using a
communication model designed in terms of connections
between hosts. This conflation of what content you want
to access with where (on what host) that content resides
extends throughout current network protocols, and deter-
mines the context in which they offer network security.

Trust in content – that it is the desired content, from
the intended source, and unmodified in transit – is de-
termined by where (from what host) and how (over what
kind of connection) the content was retrieved. A user be-
lieves they are reading the news from the New York Times
when they access it via a user-friendly name for the au-
thoritative source of that news – www.nytimes.com;
whether guessed, known, or obtained from a trusted direc-
tory (Google) in response to a few relevant search terms.
Implicitly, they are also trusting that a) the DNS has given
them a reliable indicator of where to find a host authorized
to “speak for” the name they are interested in, b) they have
actually made an HTTP connection to that host or its dele-
gate (such as a content distribution network, or CDN) and
c) that the content retrieved over that connection is unal-
tered by any unauthorized intermediary.1

A user accessing a higher-value resource, say their bank
account, may do so with confidence only over a con-
nection further authenticated by a cryptographic protocol
such as TLS [10]. This gives them assurance that not only
is the data coming from the intended source (as deter-
mined by the trust model for evaluating digital certificates
built into their software client), and that it has not been
tampered with in transit, but additionally that it may be
protected from eavesdropping by encryption.

This connection-focused approach to security inex-

1A proxy server or a NAT box might make authorized modifications
to that content.

orably ties the security of content to trust in the host
that stores it, and then additionally requires secure mech-
anisms to identify, locate and communicate with that
host. This is widely recognized as a significant prob-
lem [11, 21]. Because the “trust” the user gets in the
content they depend upon is tied inextricably to the con-
nection over which it was retrieved, that trust is transient
– leaving no reliable traces on the content after the con-
nection ends, and cannot be leveraged by anyone other
than the original retriever. A user who has stored a piece
of content that they directly retrieved cannot be sure that
it has not been modified since (e.g. by malware) with-
out re-retrieving it prior to use. Another user interested
in the same content cannot simply get it from the first; to
have any confidence in that content they must retrieve it
for themselves from the original source.

Going further, recent proposals [17, 5, 32, 6, 2, 19, 7,
21, 26, 31, 9, 3, 13, 20] suggest revising the very nature of
networks to work natively in terms of content – in other
words, the name a user would express to the network to re-
trieve a piece of content refers in some way to that content
item itself, rather than to some specific host on which the
content can be found. To be effective, such architectures
require that not only can content be retrieved by name,
but that the content so retrieved is valid – an authenti-
cated, unmodified copy of the desired content produced
by a publisher acceptable to the consumer.

Decoupling what from where requires security and net-
work primitives that can refer to, and authenticate content
itself, rather than the host and file containers where it re-
sides. Content-based, rather than connection-based, secu-
rity would allow users to securely retrieve desired content
by name, and authenticate the result regardless of where
it comes from – the original source, a copy on their local
disk, or the user next to them in StarbucksTM, or how it
was obtained – via insecure HTTP, or new content-based
mechanisms.

There have been a number of proposed mechanisms for

1

securing named network content, focusing on making it
possible to retrieve content based on self-certifying names
– names constructed from the cryptographic digest of the
content itself, or the key of the publisher used to digitally
sign it [8, 16, 5, 32, 28, 21]. The advantage of such names
is that they are globally unique, and can be generated by
simple, completely autonomous local computation.

The two key disadvantages of such a scheme are: first,
such opaque names form a flat, location-free namespace.
This makes it extremely difficult to construct an efficient
mechanism to retrieve a nearby copy of content corre-
sponding to a particular name [7, 23], rather than resolv-
ing names using a location-independent mechanism such
as a DHT [22, 30, 34].

Second, and more critical for the current discussion,
users traffic in intuitive names. Even things like email ad-
dresses and hostnames are often impenetrable to them [2,
15, 14, 4]. Postulating a universe of flat, opaque names re-
quires an indirection architecture akin to today’s DNS to
map from user-accessible names to network names [2, 6].
So the original content security problem still remains, it
has simply been changed to the problem of securing this
mapping. If the mapping can be subverted, the user ends
up with the secure, self-verifying name for a wrong or
even malicious piece of content.

To address this problem we authenticate the linkage be-
tween names – arbitrary names, including user friendly
ones – and content rather than authenticating the content
or its publisher. This allows us to securely retrieve that
content from anyone who has it, regardless of what we
choose for its name, or what mechanism – insecure or
not – we use to resolve it to retrieve the corresponding
content. This approach directly supports a number of pre-
vious proposals [8, 22, 28, 21], while providing greater
flexibility, usability and security.

In the remainder of this paper we first motivate our ap-
proach, and contrast it with previous approaches to se-
curing named network content. We then present an out-
line of how to make this work in practice, both in terms
of low-level mechanisms for efficient verification of net-
work content, and higher-level mechanisms for establish-
ing trust in that content. Finally, we outline a number
of near-term applications of securing content to enhance
trust and efficiency on the Internet.

2 Authenticating Named Content
Secure content distribution requires that any receiver

be able to reliably assess three properties of each piece of
content received:

1. Its validity: is it a complete, uncorrupted copy of

what the publisher sent.2

2. Its provenance: is the publisher one the receiver is
willing to trust to supply this content.

3. Its relevance: is this content an answer to the ques-
tion the receiver asked.

Current common network attacks (spam, pharming,
phishing, cross-site scripting, man-in-the-middle, etc.) all
rest on the receiver’s inability to assess one or more of
these properties. Unfortunately, most current proposals
to name content on the Internet do little to dispel the re-
ceiver’s darkness.

2.1 Self-Certifying Names
A common proposal for a content-oriented naming

scheme for the Internet is to use self-certifying names
– names for hosts [24] or content items [16] where the
name itself is cryptographically constructed so that one
can securely determine whether a given piece of con-
tent matches a given name. The simplest form of self-
certification, hash-verified data, simply names a piece of
content directly by its cryptographic (e.g., SHA-1) di-
gest [16, 8]. This allows the receiver to assess validity
but conveys nothing about provenance or relevance. Key-
verified data names a piece of content by the digest of the
public key used to sign that data [8, 28]. Such names add
some ability to assess provenance.

Both require a secure indirection mechanism to map
from the name understood by users to the self-certifying
name for a piece of content. Without such a mechanism,
which must face all of the name contention problems that
“semantic-free” names such as these were designed to
sidestep [5, 32], a user can easily be deceived into accept-
ing the wrong self-certifying name for the content they
are interested in. The result is that they are indeed hold-
ing a “name” that directly authenticates a piece of content
– only they have no idea that it was not the content they
wanted. In other words, the architecture provides no way
for the user to assess relevance.

Attempts to address this problem allow some user
control over names. They allow a content publisher
P to select a user-friendly tag label for a piece of
content to be incorporated into the name along with
P ’s public key. The resulting name of the con-
tent C might be Digest(PubkeyP ||LabelC) [22], or
Digest(PubkeyP)||LabelC [21], where || denotes con-
catenation. The publisher P is expected to ensure that
LabelC is unique within the set of content items signed
by PubkeyP , so that the resulting name is itself unique.

2This combines both the traditional notion of integrity, that the data
has not been altered, and authenticity, that this is the data corresponding
to the name given by the user.

2

The content is authenticated by determining whether it
was signed by PubkeyP .

Unfortunately, both approaches are flawed – they do not
allow users to verify whether a given piece of content is
associated with a given intuitive name. In both, the con-
tent C is signed by P , but the label is not. Any piece of
content signed by P can be undetectably substituted for
any other with a different label, and an attacker can as-
sociate a new label of their choice with any content pub-
lished by P .3

2.2 Authenticating the Link Between
Names and Content

We would like to allow names to take any form while
still allowing secure retrieval of content by name. We
achieve this by the simple approach of authenticating not
names, or content, but the link between them. What a pub-
lisher P “says” when they publish a piece of content is
“N is my name for content C”. We represent this by hav-
ing P digitally sign the mapping from his chosen name
N to C (possibly along with some additional metadata).
That content is made available in the network as a map-
ping triple: M(N,P,C) = (N, C, SignP (N, C)). A con-
sumer can then usefully query for an arbitrary name N ,
and authenticate both the resulting content and its asso-
ciation with N , without having to know a priori either
a unique, self-verifying identifier for C, or the specific
identity of P . Clearly this allows any receiver to robustly
assess validity, provenance and relevance. It also has a
number of other advantages:

First, regardless of the form of N , this approach
achieves location-independence. Because one can crypto-
graphically verify the authenticity and correctness of both
C and the relationship between N and C given such an
M(N,P,C), one can obtain M(N,P,C) from anyone that has
it – not just directly from P or from a location that might
be specified in N .

Second, this approach allows the authentication of ar-
bitrary forms of name N – opaque or semantically mean-
ingful, self-verifying or not, unique or not, globally-
understandable or encrypted, flat or structured. Naming
systems are used to solve a huge variety of problems
and there is no one “true name” for a piece of content.
Some names are ontological, organizing the content into
systems of meaning. Some are taxonomic, locating the
content in an organizational, topological, representational,
physical or other hierarchy. Some are simple distinguish-
ers, differentiating an object in a set of similar objects. By
allowing any name and securing the linkage between it
and its intended referent, the value and meaning added by

3Unless LabelC is, say, the digest of C (in which case it is no longer
user-determinable or user-friendly).

the naming system is preserved and secured. The naviga-
tion mechanisms used for resolving names to content may
limit the form that names can take, but these mechanisms
are themselves dependent on the particular collection of
content, its semantics and intended use. Architecturally it
is best to have an unrestricted mechanism and allow pub-
lishers and consumers to agree on what, if any, policies
and constraints must be placed on their names.

Third, it is often easier for a consumer to recognize that
P is a valid (to her) source for N , than to identify a priori
a specific P whose version of N she wants. And it is
the latter she must do if she wants to construct a query
for data in a key-verified system where N = Digest(P).
For example, a consumer might trust content published by
anyone working in her company, a status she can check
for a specific P given an instance of a signed mapping
M(N,P,C), without wanting to list all of her colleagues
up-front in a query.

2.3 Having it All
There is a common belief – embodied most eloquently

in Zooko’s Triangle [33] that names can be simultane-
ously at most two of human-understandable, secure, and
globally unique. Self-certifying names are secure and
unique, URLs are human-understandable and unique.

We have chosen to simplify this problem by separat-
ing the roles of identifier, important to the human user
in determining what content they want, and locator in-
terpreted by the network in order to retrieve that content,
from the security-critical authenticator used to determine
whether the returned content is valid. Self-certifying nam-
ing schemes ask names to play both these roles simulta-
neously. We require names to play only the role of iden-
tifiers and locators, instead using auxiliary information –
a digital signature – as our authenticator. In essence, we
are certifying content, just as a digital (identity) certificate
certifies the binding between a name and a public key. We
have moved from a model where names must carry their
own authentication information to one where we only re-
quire that receivers be able to authenticate the results they
get back. This makes explicit the fact that it is only the
receiver who can determine whether retrieved content is
indeed valid, relevant, and has an acceptable provenance
for their purpose.

This approach is essentially independent of the struc-
ture chosen for names, and leaves the problem of inter-
preting the name as a locator up to the underlying net-
working system in use. We can sign the mapping from a
URL to a web page, and authenticate that content even if
we retrieve it via insecure DNS and HTTP, or get it from
an untrusted cache. We can achieve the same for content-
based networking systems that route directly on names to

3

retrieve content [20].
This separation becomes even more important when

we realize that it is only the locator function of names
– the ability to use them to figure out where to find the
desired content – that imposes a requirement that names
be globally unique. When we authenticate the mapping
from names to content that mapping – M(N,P,C) – is al-
ways unique, so the content consumer can always achieve
functional uniqueness – distinguishing P1’s version of N
from P2’s. If P1 publishes multiple different pieces of
content under the same name N , these can also be differ-
entiated by their signatures.4 (Though that content might
be more useful to the consumer if we augment the infor-
mation P1 signs with a small amount of metadata, such as
signing time, or if P1 modifies N slightly to incorporate
versioning information.) If our network primitives allow
it, we can even request P1’s version of N rather than P2’s
– effectively augmenting our “name” with structurally-
identifiable information about the publisher.

The research question then becomes not what two legs
of Zooko’s Triangle do we choose, but given this general
approach to securing even human-memorable names, how
do we optimize our ability to locate and retrieve content
based on those names – unique or not.

3 Details; c.f. Devil is in the
The advantage, for the postulator, of postulating a net-

work security mechanism based on self-certifying names
is that the hard part – getting the correct self-certifying
name in the hands of the user in the first place is deemed
out of scope – someone else’s (as yet unsolved) problem.

Relying on an approach based on certified content –
authenticated, signed, name-content mappings – entails
navigating a different set of uncharted waters, itself his-
torically labeled “Here There Be Dragons”. In this case,
the problem is not that of getting the user the correct name
for their content – those names can be human-readable
structured, and to a first approximation can be obtained
through the same combination of memory, guessing, and
lookup/search services we use to navigate the Web today.
The problem is not retrieving the corresponding content
based on the name – we’ve already delegated that to any
number of potential network infrastructures. The problem
is, how do we go from a name, and the resulting retrieved
content to the user-focused properties of validity, prove-
nance, and relevance we described in section 2. In other
words, how does a user decide what content to trust?

We want to emphasize it is authenticity and trust which

4As the signature is over the name, N , and the content, C, by the
publisher P , changing any of N , C or P will result in a different signa-
ture.

are key to effective content-based security, not secrecy.
Given mechanisms to retrieve valid content by name, one
can trivially add secrecy by encrypting that content using
keys distributed and authenticated using those underlying
protocols for retrieving valid content.

Helpfully, content-based security itself offers us tools
to solve this problem. We can break the problem of trust-
ing content down into several steps: first, verifying that a
given name-content mapping was signed by a particular
key; second, determining something about who that key
belongs to – who, in user terms, published that content;
and third, deciding whether or not that is an acceptable
source for this particular content and the use to which it
is to be put. In the terminology of section 2, the first step
determines validity, the latter two steps determine prove-
nance, and the name itself, along with the means by which
it was obtained and the third step above, determine rele-
vance.

3.1 The Mechanics of Publishing and Veri-
fying Content

To make our approach concrete, we start by discussing
the low-level mechanics. A content publisher must first
determine the name by which she wants to refer to
that content, which determines how that content will be
found. Then she must generate a digital signature over
that name and the corresponding content – M(N,P,C) =
(N, C, SignP (N, C)).5 A content consumer, given N ,
must be able to retrieve not only C, but also the authen-
ticator SignP (N, C), and sufficient supporting informa-
tion (signed or not) to determine what public key to use
to verify SignP (N, C), and where to find a copy of it if
they don’t have it already. (Similar problems are faced
with key-verified data, but usually not mentioned.)

There are basically two ways to find the necessary key,
illustrated by current standards for representing signed
data: either you store with the data a copy of the key
used to sign it, usually wrapped in a digital certificate to
give the key itself some provenance (e.g. PKCS#7 (RFC
2315)), or you provide a name by which that key can be
retrieved (e.g. XML Digital Signature Standard, which
provides URLs to indicate where keys and certificates are
stored). If the signature verifies, we have found the correct
public key. If it does not, we know that we have incorrect
or modified content, or we have the wrong key. Public

5For simplicity of presentation, we describe content authentication in
terms of a digital signature per content item. In practice, for efficiency
we may individually sign fragments of content that will be separately
retrieved to minimize verification latency, or we may aggregate many
name-content mappings together using techniques such as Merkle Hash
Trees [25] and sign them all together to minimize signing cost. Similarly,
we gloss over here the question of how to seamlessly integrate content
signing into the content production workflow.

4

keys act in this sense as a limited form of self-verifying
content. (Note that this form of verification merely tells
us that a given key signed this content mapping – not who
that key belongs to or what value we should place on that
signature.)

For example, a simple way to implement such a
content-signing scheme in today’s Web would be to sign
web pages using a slight modification to standard XML
digital signature mechanisms, and store and distribute
links N to those signed content items – which contain C
(the original HTML), SignP (N, C), and a name (URL)
at which one can find P ’s public key. The modification we
require to achieve our secure linkage is to sign not just C,
but N as well. This can actually be achieved quite simply,
for example by designating an XML tag that indicates the
name, N , of the content, and including that tag and N in
the signed HTML (or XHTML). A verifier would then not
only verify the signature, but also confirm that the name
N that was signed matched the name N by which they
found the content.

3.2 Determining Trust
The verification we described above is purely syntactic;

it verifies that the indicated key was used to sign a particu-
lar mapping, but not what that key means – who it belongs
to, or whether a signature by that key indicates whether or
not the user should trust it. Luckily, the basic primitive
of content-based security – authenticated mappings from
names to content – can be used to implement mechanisms
for establishing higher-level trust. This can be easily seen
if one remembers that what we are effectively doing is
certifying mappings from names to content. If the name
N identifies not only the location of, but the owner of a
public key, and the content C contains that public key,
then the signed mapping M(N,P,C) is effectively an iden-
tity certificate where P acts as the certification authority.

The most common approach to determining trust on the
Internet today is the one used by TLS to secure our bank
example in section 1, namely a very simple, global Public
Key Infrastructure (PKI). A small number of commercial
providers whose keys are built into common web browsers
serve as the roots of trust, signing digital certificates that
associate web server DNS names with public keys. The
good point of this system is that in a way it accidentally
implies an association between trust and content. A tra-
ditional PKI serves to authenticate mappings between a
name (e.g. of a person) and a public key, but says very
little about what that key is or isn’t allowed to do; that
is left up to the consumer (“relying party” in PKI par-
lance). The PKI used on the Web associates a public key
with a content namespace – the DNS domain name that
begins the URLs that web server is trusted to serve. In

other words, www.amazon.com is trusted to serve con-
tent whose name begins with www.amazon.com but not
www.paypal.com. However, that PKI is not very expres-
sive – all trust comes from outside the namespace, in the
form of the commercial CAs. www.amazon.com is not,
for example, able to delegate control of parts of its names-
pace to other public keys.

One can trivially represent the current Web PKI in
our model of signed name-content mappings. However,
one can go beyond that, and achieve much greater rep-
resentational power. By interpreting names N as struc-
tured, forming a forest of hierarchical namespaces (as
is true of existing URLs), our content-based security
scheme allows trust to be tightly coupled to content.
For example, nytimes.com could associate keys owned
by department editors with different parts of its content
namespace, allowing the entertainment editor to sign sto-
ries located under /nytimes/entertainment, but not
/nytimes/headlines. Essentially we are representing
trust in terms of a set of linked local namespaces, bind-
ing keys to related names. This mirrors well-studied
paradigms for establishing user-friendly, namespace-
based trust embodied in SDSI/SPKI [29, 18, 1, 12].

3.2.1 Evidence-Based Security
We can add to our notion of structured names a repre-

sentation of secure reference, much like a trusted hyper-
link or bookmark. Such a reference maps from a name N
not to an arbitrary piece of content C, but to another name
N ′, the target of that link, together with authentication in-
formation (e.g. the public key of the intended publisher
P ′, or even the self-certifying digest of the intended con-
tent). Such references can be used to express delegation,
saying in essence that the publisher P intends by the name
N whatever the publisher P ′ refers to with the name N ′.

Such references can express traditional forms of dele-
gation, but they can also be used to build up a network of
trust in content – if many publishers that we trust all say
that they believe in P ′’s value for N ′, we are much more
likely to believe it as well. If an attacker subverts a single
publisher, e.g. obtaining the key for P ′′ and using it to
forge a malicious value for N ′ the attack will fail, as the
preponderance of the evidence will still point to the cor-
rect value. With each piece of additional signed support
for trustworthy content, it becomes harder and harder for
an attack to succeed, as an attacker simply cannot subvert
all of the available evidence.

3.2.2 Bootstrapping Trust
Content-based security provides a number of power-

ful building blocks from which we can leverage trust in
a small number of keys into trust in a large forest of in-
terconnected content. But we must still start from some-

5

where – an initial set of keys, perhaps obtained via some
out of band mechanism, from which we begin to build.

We would like to argue that the flexibility and expres-
sive power of content-based security makes it easier to
solve this problem too. We have shown above that one
can easily replicate today’s limited Web trust model in a
content-based system; simply distribute the same root CA
keys in the same out of band (browser installation) chan-
nel used today, and use those CA keys to certify root keys
for each content namespace (as they certify web server
keys today). However, associating keys with content al-
lows us to differentiate among them, requiring higher
assurance and greater trust for “important” content than
unimportant, and allowing us to use different mechanisms
to establish trust in different types of keys. I might trust
my mother’s public key because I obtained it from her by
email and see her use it repeatedly over time; I might trust
my notion of Google’s public key because all of the peo-
ple I know and web sites I visit believe in the same value
of Google’s key that I do.

Because we can refer to keys, policy and content se-
curely by name, we can work to build a public system of
trust that our applications can rely on [27].

4 Conclusions
We have suggested an improved approach to content

naming, centered on authenticating the linkage between
names and content rather than either names or content
alone. This allows us to authenticate retrieved content re-
gardles of how, or from whom, it is obtained, for any arbi-
trary (even human-readable) name form. We argue that
this approach to certifying content is not only general,
capable of securing content on both current connection-
oriented and future content-centric networks, but deploy-
able, and has the potential to enable a range of new appli-
cations.

References
[1] Martin Abadi. On SDSI’s Linked Local Name Spaces. Journal of

Computer Security, 6(1-2):3–21, October 1998.

[2] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and
Jeremy Lilley. The Design and Implementation of an Intentional
Naming System. SIGOPS Oper. Syst. Rev., 33(5):186–201, 1999.

[3] Bengt Ahlgren, Matteo D’Ambrosio, Marco Marchisio, Ian Marsh,
Christian Dannewitz, Börje Ohlman, Kostas Pentikousis, Ove
Strandberg, René Rembarz, and Vinicio Vercellone. Design con-
siderations for a network of information. In ReArch, 2008.

[4] Mark Allman. Personal Namespaces. In HotNets-VI, Atlanta,
Georgia, November 2007.

[5] H. Balakrishnan, S. Shenker, and M. Walfish. Semantic-Free Ref-
erencing in Linked Distributed Systems. In IPTPS, February 2003.

[6] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy,
Scott Shenker, Ion Stoica, and Michael Walfish. A Layered Nam-
ing Architecture for the Internet. In SIGCOMM, 2004.

[7] Matthew Caesar, Tyson Condie, Jayanthkumar Kannan, Karthik
Lakshminarayanan, Ion Stoica, and Scott Shenker. ROFL: Routing
on Flat Labels. In SIGCOMM, 2006.

[8] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System. Lecture Notes in Computer Science,
2009:46, 2001.

[9] Christian Dannewitz, Kostas Pentikousis, René Rembarz, E. Re-
nault, Ove Strandberg, and J. Ubillos. Scenarios and research is-
sues for a network of information. In Proc. 4th Int. Mobile Multi-
media Communications Conf., July 2008.

[10] T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF - Net-
work Working Group, The Internet Society, January 1999. RFC
2246.

[11] D. Eastlake. Domain Name System Security Extensions. IETF -
Network Working Group, The Internet Society, March 1999. RFC
2535.

[12] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian M. Thomas, and Tatu Ylonen. SPKI Certificate Theory,
September 1999. RFC2693.

[13] Christian Esteve, Fábio L. Verdi, and Maurı́cio F. Magalhães. To-
wards a new generation of information-oriented internetworking
architectures. In CONEXT, 2008.

[14] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea,
Frans Kaashoek, and Robert Morris. Persistent Personal Names
for Globally Connected Mobile Devices. In OSDI, 2006.

[15] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea,
Frans Kaashoek, and Robert Morris. User-relative names for glob-
ally connected personal devices. In IPTPS, 2006.

[16] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast and se-
cure distributed read-only file system. ACM Trans. Comput. Syst.,
20(1):1–24, 2002.

[17] Mark Gritter and David R. Cheriton. An architecture for content
routing support in the internet. In Usenix Symposium on Internet
Technologies and Systems (USITS), 2001.

[18] Joseph Y. Halpern and Ron van der Meyden. A logic for SDSI’s
linked local name spaces. In Proceedings of the 12th IEEE Com-
puter Security Foundations Workshop, 1999.

[19] Van Jacobson. A New Way to Look at Network-
ing, August 2006. http://video.google.com/
videoplay?docid=-6972678839686672840&ei=
iUx3SajYAZPiqQLwjIS7BQ&q=tech+talks+van+
jacobson.

[20] Van Jacobson. Making the Case for Content-Centric Networking:
An Interview with Van Jacobson. ACM Queue, January 2009.

[21] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Er-
molinskiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. A Data-
Oriented (and Beyond) Network Architecture. In SIGCOMM,
2007.

[22] John Kubiatowicz et al. OceanStore: An architecture for global-
scale persistent storage. SIGPLAN Not., 35(11):190–201, 2000.

[23] Laurent Mathy and Luigi Iannone. LISP-DHT: towards a dht to
map identifiers onto locators. In CONEXT, 2008.

[24] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Em-
mett Witchel. Separating Key Management from File System Se-
curity. In SOSP, 1999.

[25] Ralph Charles Merkle. Secrecy, authentication, and public key
systems. PhD thesis, 1979.

[26] Börje Ohlman et al. First NetInf architecture description, April
2009. http://www.4ward-project.eu/index.php?
s=file_download&id=39.

[27] Eric Osterweil, Dan Massey, Batsukh Tsendjav, Beichuan Zhang,
and Lixia Zhang. Security Through Publicity. In HOTSEC ’06,
2006.

[28] Bogdan C. Popescu, Maarten van Steen, Bruno Crispo, Andrew S.
Tanenbaum, Jan Sacha, and Ihor Kuz. Securely replicated web
documents. In IPDPS, 2005.

6

[29] Ronald L. Rivest and Butler Lampson. SDSI - A Simple Dis-
tributed Security Infrastructure. Technical report, MIT, 1996.

[30] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup Ser-
vice for Internet Applications. In SIGCOMM, 2001.

[31] D. Trossen. Conceptual architecture of PSIRP including subcom-
ponent descriptions (D2.2), June 2008. http://psirp.org/
publications.

[32] Michael Walfish, Hari Balakrishnan, and Scott Shenker. Untan-
gling the Web from DNS. In NSDI, 2004.

[33] Zooko Wilcox-O’Hearn. Names: Decentralized, secure, human-
meaningful: Choose two, September 2003. http://zooko.
com/distnames.html.

[34] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing. Tech-
nical Report UCB/CSD-01-1141, Computer Science Division, U.
C. Berkeley, April 2001.

7

