
FileSync/NDN: Peer-to-Peer File Sync
over Named Data Networking

Jared Lindblöm1, Ming-Chun Huang1, Jeff Burke2 and Lixia Zhang1

1. Computer Science Department, University of California, Los Angeles
2. REMAP, University of California, Los Angeles

Abstract—FileSync/NDN is a distributed application that im-

plements file synchronization using Named Data Networking.

Its purpose is to provide a service similar to the commer-

cial DropBox platform, with improvements. Unlike DropBox,

FileSync/NDN adopts a peer-to-peer (P2P) model that does not

require centralization of data, and it employs NDN to reduce the

traffic that would be present in a TCP/IP-based P2P approach.

FileSync/NDN takes advantage of several features of NDN to

improve the distribution and security of the content it provides.

It employs the CCNx Synchronization Protocol (CCNx-SYNC)

to maintain consistency of its content across multiple nodes on

the network. In this technical report, the design considerations

of NDN and SYNC are discussed, and a novel application design

for distributed file synchronization is introduced.

I. INTRODUCTION

File synchronization is a useful network application that
provides data replication over a variety of hosts to support
sharing, backup, and remote access. The commercial service
DropBox uses a client-server (C-S) model to implement such
synchronization. It is simple and popular, but has drawbacks
including high traffic concentration at the server and concen-
trated points of failure. To enforce its security model, clients
on the same local area network are required to coordinate with
a remote central server before they may exchange information
locally to achieve consistency. In addition to these drawbacks,
client-server models also may offer easy attack targets because
the addresses of the servers are well-known.

Peer-to-peer (P2P) alternatives use a distributed file sharing
model, which has different drawbacks, such as a large number
of duplicated packets when using the current Internet Protocol
(IP), which is due to the lack of efficient control in data
distribution, and limited resilience to failure when there are
a small number of participants. Also, since data can be
disseminated by every peer, the integrity and relevance of the
data are difficult to assure.

File synchronization applications reconcile all distributed
copies of a given file, which is usually identified to the user
by its path and filename. Typically, applications attempt to
ensure every participating node has the latest version. In the
C-S model, all clients must be informed of an update to a file
on any other client either through a callback from, or periodic
polling of, a server. When there is an update to a file on one
client, the server must reflect this quickly so that all other
clients are able to access the latest copy from the server. At
the time of replication, high traffic at the server results, because

each client must ask for a copy of the file from the server and
cannot request it from another client. In a P2P file sharing
system, there isn’t a central server to mandate the most up-to-
date copy of a file. Therefore, propagation of synchronization
updates must be well-designed, otherwise synchronized files
may develop inconsistencies across hosts.

This report explores how Named Data Networking (NDN)
can be used to support file synchronization without centraliza-
tion, while also mitigating the significant drawbacks of P2P
strategies used on the current Internet. This application seeks
to harness NDN’s efficient multicast dissemination, intrinsic
content signatures and straightforward incorporation of storage
at every node. FileSync/NDN uses the CCNx Synchronization
Protocol to maintain consistency of files being synchronized
and relies on NDN’s intrinsic content caching and multicast
to reduce traffic when compared to IP-based P2P approaches.

II. BACKGROUND

A. Named Data Networking

Named Data Networking (NDN) [10], [11] is a data
consumer-driven network architecture in which data flows
through the network when it is requested by a consumer. In
NDN, named content is identified with, and requested by, its
unique name; additionally, every segment of content is signed
by the producer, binding it to its name. To retrieve such a
content object from the network, a consumer specifies the
name of the content object in an interest packet which it issues
to the network. Each upstream node in the network attempts to
satisfy the interest by the providing the corresponding content,
if available, or else forwards the interest on to other nodes
advertising an appropriate prefix.

When an interest is satisfied, the corresponding data follows
the path of the interest back to the requester. Each router
along the path traveled by an interest receives the interest’s
corresponding data packet, and it checks its forwarding in-

formation base (FIB) to determine where the content should
be forwarded. At each node, pending interests are consumed,
and the data packet is forwarded via all registered interfaces
to requesting consumers. If no data has arrived to fulfill an
interest, the interest is kept in the router’s pending interest

table (PIT) until it times out. Content objects are cached in
the router’s memory for future use, enabling a router to satisfy
repeated interests for the same content directly from its cache.

Lixia Zhang
NDN Technical Report NDN-0012, March 2013

Lixia Zhang




B. CCNx-SYNC protocol in NDN

In addition to the content store of each node, which caches
the content objects that pass through the node repositories

are used within the network to provide persistent storage of
published content objects. In the CCNx reference implemen-
tation, the Synchronization Protocol [3] provides a mechanism
to efficiently synchronize namespaces and their corresponding
content across repositories in an NDN network. CCNx-SYNC
synchronizes named data saved to repositories under a given
name prefix, enabling applications to synchronize content by
simply saving it to their repository under that prefix. The list
below outlines important concepts and terminology used by
CCNx-SYNC.

1) A collection is a set of content to be synchronized, as
identified by its namespace, the content prefix.

2) The topological prefix defines the namespace used for
the broadcast messages needed to synchronize a given
collection.

3) The definition of a collection is called a slice and
includes (1) the collection prefix, (2) a set of filters that
limit the content to be synchronized under that prefix,
and (3) the topological prefix under which broadcast
messages used for synchronization can be issued for
the collection. In order to synchronize content objects
among peers, each peer’s repository must define the
same slice.

4) After a collection has been defined in a repository,
sync agents associated with that repository build a sync

tree based on the collection’s content. The combined
hash for each node in the tree is the sum of the
hashes of individual content names in that node and of
the combined hashes of all its child nodes. The root
hash is compared by sync agents across repositories
to determine if the content objects represented in the
collection are consistent.

5) Root advise interests are periodically broadcast to sync
peers using the topological prefix. By default, the proto-
col limits such peers to those reachable in two hops or
less. Each root advise interest contains the peer’s current
hash digest of the local sync tree and is used to check the
consistency of sync trees for a given collection across
repositories within the network.

CCNx-SYNC’s process can be summarized follows: First, an
appropriate slice with valid topological and content prefixes
is established for a group of repositories to be synchronized.
Then the local sync agent for each repository generates its own
sync tree based on the stored collection of content objects.
Periodically it sends out a root advise interest containing the
tree’s hash digest, which serves to inquire about updates to
the collection it is synchronizing. All peers that receive a root
advise interest corresponding to a slice they share compare the
digest in the interest with their own. If they are inconsistent,
the trees are reconciled using the interest/data exchange in the
topological prefix described in [3].

C. Routing considerations

Before proceeding to describe the architecture of
FileSync/NDN, it is also important to note some routing-
related considerations resulting from the use of CCNx-SYNC.

Each peer that participates in synchronizing a repository
must be able to publish content and receive interests in the
topological prefix, where root advise interests and responses
are shared, and the content prefix, where the actual data is
published. This requires an approach somewhere along the
range of two extremes: (a) providing routing table entries
for both prefixes per collection (e.g., FileSync/NDN shared
directory) per peer, or, (b) using a common “broadcast”
namespace for all synchronized repositories. For simplicity,
we take the latter approach in our testbed implementation,
and assume a single prefix routed with broadcast semantics,
e.g., /ndn/broadcast. The scaling limitations of both
approaches must be addressed in future work.

CCNx-SYNC, by default, limits interests to “scope 2”,
which enables only directly-connected peers to exchange con-
tent using this mechanism. While this default can be changed,1
the preferred method is to use the standard implementation
of CCNx to promote easy adoption of the application. To
enable use on the NDN testbed, where most users’ nodes
are not directly connected to each other, requires running the
Filesync/NDN application on each hub, which is connected
via scope 2. These hubs are configured to synchronize content
with the nodes that use them for connectivity. These nodes are
typically end users’ hosts and are also connected with scope
2.

III. ARCHITECTURE AND SYSTEM DESIGN

CCNx-SYNC on its own does not support file synchro-
nization as performed by popular applications like DropBox
because (1) it does not yet provide an API or convention for
the removal or modification of content that has previously
been added to a collection; (2) it is embedded inside the
CCNx C-based repository; and (3) it cannot be used directly
to synchronize the local filesystem. FileSync/NDN is designed
to work in conjunction with CCNx-SYNC to enable the
necessary operations - add, delete, move, modify and rename
- to be performed directly on the local filesystem and to allow
synchronization to occur automatically in the background
without user intervention.

FileSync/NDN is designed to synchronize files between
multiple hosts by maintaining a consistent view of the common
shared directory. Files within the designated local directory
on each host are mapped to a collection of versioned con-
tent objects within a repository and synchronized between
machines using CCNx-SYNC. Because the synchronization
protocol only supports the addition of content into a collection,
FileSync/NDN extends the functionality of CCNx-SYNC to
maintain consistency between the collection in the repository
and the local files the collection represents. The following
sections describe the application’s design.

1This can be changed by setting the CCNS_SYNC_SCOPE environment
variable and modifying the code itself to accept larger scope values.



A. Namespace Design

As previously mentioned, in CCNx-SYNC a slice defines a
collection as a combination of a topological prefix, a content
prefix, and filters.2 To configure FileSync/NDN to synchronize
a directory with other peers, a user provides (1) a local
directory to hold the files to be shared; (2) the topological and
content prefixes associated with the desired shared directory,
thus defining the slice for CCNx-SYNC. In the current design,
the prefixes are the same for all participating peers. Other users
wishing to share this folder must similarly provide their local
instance of FileSync/NDN with the identical topological and
content prefixes so that the same slice can be saved to each
of their local repositories. Figure 1 depicts an example slice
definition.3

Topological Prefix Content Prefix 

Slice /ndn/broadcast/apps/filesync /ndn/broadcast/apps/filesync/uclaClass217 

Fig. 1: Example Slice in FileSync/NDN

Every file in the shared directory is written by
FileSync/NDN to a local CCNx repository in the form of seg-
mented, versioned content objects adhering to the repository
naming conventions. The file data is stored under the content
prefix, using the file’s filename and relative path as its name,
in UTF-8 text, followed by a version which corresponds to
the timestamp of when the object was created, followed by
segment numbers, if needed. Additionally, the file is also made
available in a flat namespace under the content prefix, where
it is named by the SHA-1 hash of its name and relative path,
followed by version and segment numbering.

<content prefix> 

<version> 

<segment> 

<relative path & filename> 

/ndn/broadcast/apps/filesync/uclaClass217/Document.txt/%FD%05%0B0%CFf%21/00 

SHA1 <relative path & filename> 

Fig. 2: Shared File Namespace

2Filters are not used in the current implementation of FileSync/NDN.
3These prefixes could be different, but both require all peers to be able

to publish content and receive interests for both the topological and the
content prefix. As discussed above, the example uses the /ndn/broadcast
namespace for both, because that will be the most straightforward deployment
on the NDN testbed.

The naming convention is shown in Figure 2, along with an
example for the first segment of the shared file Document.
txt in the root of the shared directory published under /ndn/
broadcast/apps/filesync/uclaClass217.

B. Shared Directory Reconciliation

Each host informs all other hosts of local changes to the
synchronized collection by generating a snapshot representing
the complete state of the local shared directory, as well as
a record of deletions, and adding it to the collection using a
unique name. This snapshot is a plaintext, CSV-format file that
lists both the files that exist in the shared directory and those
that have been deleted from it. Its content is synchronized in
the same manner as the other files in the shared directory by
the underlying CCNx-SYNC mechanism. Figure 3 shows the
naming convention for the snapshot which is also stored using
standard CCNx repository conventions. In FileSync/NDN,
there is one “latest” snapshot for every collection that is
reconciled across all participating peers.

<content prefix> 

<version> 

<segment> 

.filesync_snapshot 

/ndn/broadcast/apps/filesync/uclaClass217/.filesync_snapshot/%FD%05%0B0%F5%B6f/00 

Fig. 3: Snapshot Naming

Figure 4 depicts the information which a snapshot holds on
each file: relative path, existence, content name and digest.
Relative path specifies the file’s name and path relative to the
local shared directory root.

Relative Path Existence Content Name Digest 

Document.txt True /ndn/broadcast/apps/filesync/uclaClass217/
Document.txt/%FD%05%0B0%CFf%21 

2205e48de5f93c7847
33ffcca841d2b5 

Reports/Report.pdf True /ndn/broadcast/apps/filesync/uclaClass217/
Reports/Report.pdf/%FD%05%0B0%F5%B6f 

d41d8cd98f00b204e
9800998ecf8427e 

Fig. 4: File Metadata in the Snapshot

The existence entry indicates whether that file should exist
in the shared directory and it is used by FileSync/NDN to
overcome the add-only nature of CCNx-SYNC. 4 The content

4This approach is in contrast to the approach proposed by [12], [13],
whereby every content object that should no longer exist is overwritten with an
empty content object. Although both approaches overcome this limitation, the
approach proposed by [12], [13] produces, in the worst case, twice as many
content objects in a collection than the approach used by this application.



FileSync/NDN 

Global Snapshot 
Repository 

1. Callback informs 
application of snapshot 
update. 

2. Newest snapshot is requested 
and returned to application. 

/file1,….,….,…. 
/file2,….,….,…. 
/file3,….,….,…. 
/file4,….,….,…. 
……………………. 
……………………. 
……………………. 
……………………. 

Fo
r 

Ea
ch

 Recognize file? 

3. Shared Folder is reconciled 
on a file - by - file basis. 

Should file exist? Remember file 

Does file exist locally? 

Request file, add 
local copy 

If versions differ, request file 
and update local copy 

Should file exist? 

Request file, add 
local copy 

Does file exist locally? 

Delete local copy 

Yes No 

No 

Yes 

Yes 

No Yes Yes 

Fig. 5: Shared Directory Reconciliation

name is included as an absolute path, including the content
prefix, and follows the naming convention described above.
The digest of a file is used by FileSync/NDN to verify file
integrity before it is placed in the shared directory, and it is
calculated by taking the MD5 summation of its contents.

Hosts reconcile the differences between a local hashtable,
which tracks file additions, deletions, and modifications in the
local directory, and the state of the shared directory as spec-
ified in the synchronized snapshot file. Each host reconciles
the differences between the local shared directory and the state
from the latest snapshot using the algorithm shown in Figure
5, which is applied whenever a snapshot is received that is
newer, i.e., has a higher version number, than the previous
local copy. In the worst case scenario, the algorithm compares
n number of files in the snapshot to n number of local file
copies, which occurs when every file entry is compared with
a local copy in the local shared directory.

An event-based approach is used to detect and respond to
changes in the local file system and corresponding repository.
A file system watcher generates an event (callback) when
changes to the local shared directory occur. The local hashtable
is updated and a new snapshot is written to the repository
reflecting those changes. Asynchronously, the sync tree is
updated by CCNx-SYNC, and the synchronization process
occurs as discussed in the previous section. Similarly, when a
new snapshot file coming from another peer is synchronized
with the collection, a callback is received from CCNx-SYNC.
The snapshot is compared with the local directory, and, if
necessary, interests are issued to get new content objects from
the repository, which are then written to the local file system.

IV. IMPLEMENTATION

In this section, the approach to implementation of the
application is briefly outlined.

A. Cross Platform Support

FileSync/NDN was developed in Java so that it is platform
independent. This application will run on any platform sup-
ported by the CCNx library. It has been tested in the Linux
and Mac environments.

B. File System Monitoring

Jnotify[4] is used for file system monitoring. It is a Java
library that enables Java applications to listen to file system
events such as creation, modification, renaming, and deletion.
Jnotify informs the application of file system events by invok-
ing a registered callback function. Jnotify was incorporated
into FileSync/NDN to monitor changes made to the local
shared directory.

C. Multi-threading

FileSync/NDN is a multi-threaded application. File system
events, content publication and content retrieval are all handled
by threads to improve the efficiency of the application. The
current application dispatches threads to a thread pool that is
allocated to run up to twenty threads simultaneously.

D. Batch-processing

To improve shared directory reconciliation efficiency, snap-
shots are published no faster than every two seconds and reflect
all changes that have been made to the local shared directory
over that period.

V. PRELIMINARY EVALUATION

A. Speed of Reconciliation

An experiment was conducted to determine the relationship
between the time it takes the application to reconcile a shared
directory and the number of file updates contained in a
snapshot.



Two virtual machines running Ubuntu 12.04 were used. The
Eclipse application profiling tool, TPTP [5], was employed to
measure the time it took FileSync/NDN to reconcile a local
directory after first receiving a new snapshot. The results from
this experiment suggest that the shared directory reconciliation
algorithm that was developed for this application performs
linearly. Figure 6 shows the relationship between the number
of files in a snapshot and the time it takes the application to
process that snapshot.

Fig. 6: Reconciliation Experiment Result

B. Speed of Propagation

A second experiment was conducted to determine the rela-
tionship between the number of peers sharing a synchronized
collection and the time it takes a snapshot update to be
propagated to all peers.

Six virtual machines running Ubuntu 12.04 were used. Each
VM was time-synchronized using the network time protocol
(NTP) over IP. The application was tested using groups of
two, three, four, five and six peers. From these experiments,
it was observed that, on average, it took the application 0.35
seconds to propagate the global snapshot to all peers, with a
standard deviation of 97 milliseconds. This measurement was
taken from the time just before a peer wrote a new global
snapshot to the time each peer received word of the update.
There was no observed correlation between the number of
peers sharing the synchronized collection and the average time
it took each peer to receive the snapshot update.

VI. DISCUSSION AND FUTURE WORK

A. Use of CCNx-SYNC

CCNx-SYNC provides the ability to effectively synchronize
content across hosts over NDN. However, it has limitations for
supporting a “DropBox-style” file synchronization application
like this one. The sections above describe how FileSync/NDN
builds on the current CCNx approach to support the file oper-
ations necessary for a distributed file sharing service. Other
design decisions in CCNx-SYNC require tradeoffs for this
application: (1) As discussed, CCNx-SYNC limits the scope
of the root advise interest to two hops or less, limiting the

application’s reach to neighboring repositories. (2) It requires
that each participating repository agree on the definition of
a synchronized collection, i.e. uses the same content prefix,
in order to synchronize the content objects associated with
that collection. (3) The order in which names and content are
synchronized is arbitrary, which requires the application to
track the order of file system events itself, if it chooses to
perform reconciliation. [2].

B. Security

Future versions of FileSync/NDN will provide users with
the ability to control access to the files they are sharing. Users
will have the ability to decide who can read from, and/or write
to, a collection that will be synchronized across machines.
We aim to achieve this by leveraging the group-based access
controls available in the CCNx Java API and obfuscating the
content names of shared files.

1) Group-Based Access Controls: In the CCNx Java API,
an AccessControlManager can be used to enforce an access
control list on a particular namespace in a repository. We plan
to adapt this for subsequent versions of FileSync/NDN. The
AccessControlManager implements read, write, or manage
permissions for named users or groups. The permissions
of each user are tied to the user’s published public key.
Permissions are supersets of one another, allowing writers
to read, and managers to read and write. Managers have the
additional capability to create and edit the access control lists
[1]. The repository enforces the access policy by requiring
that the AccessControlManager of the namespace in question
be consulted before any content is read from, or written
to, the repository. Content stored under the namespace is
encrypted; if access is granted, the AccessControlManager
provides the appropriate content encryption/decryption keys
to encrypt/decrypt the content. An access control policy will
be created by allowing the user to define the managers, writers
and readers of a namespace. A manager of a namespace would
have the option to add or revoke permissions for any user at
any time.

2) Preventing File Name Leakage: Even though access
to the shared files in a namespace can be controlled by an
access policy, an outsider could glean information about what
files are being shared by listening to the interests and data
packets flowing between repositories. To prevent snooping,
users will be given the option to obfuscate the content names
of each file in the shared directory. This will be accomplished
by replacing the relative path of each file with its secure
hash and mapping that name to the file’s relative path in the
snapshot. An initial version of this feature has already been
implemented, as mentioned above.

C. Version Control and Conflict Resolution

FileSync/NDN handles conflicts between snapshots of a
common shared directory by employing a last-writer-wins
policy. When a snapshot is created, it is versioned using a
network timestamp. If two snapshots with conflicting views
are created and added to the collection, the snapshot with the



latest timestamp is considered, and the other one is ignored.
In CCNx, network timestamps are accurate to 1/4096 second,
making it very unlikely that two snapshots could be created
with identical timestamps. By employing this form of conflict
resolution, changes proposed by the ignored snapshot are
discarded and never reflected in the state of the shared direc-
tory. Work is presently being performed to incorporate more
desirable forms of conflict resolution into this application,
which could provide version control features.

VII. RELATED WORK

H. Choi and J. Kang proposed a home-networking file
storage system that runs over NDN [6]. They designed and
implemented an application that provided a file sharing service
using the client-server model. They determined that their
design alleviated traffic concentration at the server by taking
advantage of NDN’s in-network content caching, but did not
prevent single-point failure problems inherent in a client-server
design. Z. Qu and J. Burke proposed a framework to support
a car racing game, Egal Car, over NDN [13]. They used
the CCNx Synchronization Protocol to synchronize gaming
messages between players. V. Jacobson, et. al proposed the
concept of custodian-based information sharing [12]. To sup-
port the removal of content from a synchronized collection,
they proposed adding a content object to the collection to flag
certain content as having been removed. Chronos, proposed by
Zhu, et. al, is a multi-user chat application that runs over NDN
[14]. The authors of this application bridged existing XMPP
protocol-enabled, client-end software with a synchronization
protocol that they designed to provide scalable data dissem-
ination of chat messages over NDN. In their design, special
namespace rules were defined to guarantee reliable delivery
of chat messages in chronological order to each client. In
Securing Network Content by V. Jacobson, et. al, general
security considerations and designs in NDN are discussed
[8] and two implementations of a security-centric design are
proposed in D. Kulinski and J. Burke’s NDN Video technical
report [7] and Securing Instrumented Environments by J.
Burke, et. al[9].

VIII. CONCLUSION

FileSync/NDN is a distributed file sharing application im-
plemented using the CCNx reference implementation. An
initial evaluation suggests synchronization for modest numbers
of files to be linear in time. The application’s design takes
advantage of several features of NDN to improve the distribu-
tion and consistency of the content it provides. FileSync/NDN
extends CCNx-SYNC to support the file operations necessary
for a distributed file sharing service that is transparent to
the user. This approach holds promise for redefining the
way applications share information across multiple hosts on
a network. Current limitations include routing requirements
dictating that each peer be able to publish content in the same
prefix. Future work is underway to improve the application’s
synchronization efficiency, routing requirements, robustness

and security with the goal that it will be a popular application
within the NDN community.

REFERENCES

[1] Access control manager class reference. https://www.ccnx.org/releases/
latest/doc/javacode/html/classorg 1 1ccnx 1 1ccnx 1 1profiles 1
1security 1 1access 1 1 access control manager.html.

[2] Ccnsyncslice manual page. https://www.ccnx.org/releases/ccnx-0.7.
0rc1/doc/manpages/ccnsyncslice.1.html.

[3] Ccnx synchronization protocol. http://www.ccnx.org/releases/latest/doc/
technical/SynchronizationProtocol.html.

[4] Jnotify-file system event library for java. http://jnotify.sourceforge.net/.
[5] Test and performance tools platform project. http://www.eclipse.org/

projects/project.php?id=tptp.
[6] H. Choi and J. Kang. NDN-based Smart Digital Home Storage. UCLA

CS217 Class Project, 2011.
[7] D. Kulinski and J. Burke. Ndnvideo: Random-access live and pre-

recorded streaming using ndn. Technical report, University of California,
Los Angeles, REMAP, 2012.

[8] D. Smetters and V. Jacobson. Securing network content. Technical
report, PARC, 2009.

[9] J. Burke and P. Gasti and N. Nathan and G. Tsudik. Securing
Instrumented Environments over Content-Centric Networking: the Case
of Lighting Control. In CoRR, 2012.

[10] L. Zhang and D. Estrin and J. Burke. Named data networking (ndn)
project. Technical report, PARC, 2010.

[11] V. Jacobson and D. Smetters and J. Thornton and M. Plass and N. Briggs.
Networking Named Content. In CoNEXT ’09, pages 1–12. ACM, 2009.

[12] V. Jacobson and R. Braynard and T. Diebert and P. Mahadevan and
M. Mosko and N. Briggs and S. Barber and M. Plass and I. Solis
and E. Uzun and B. Lee and M. Jang and D. Byun and D. Smetters
and J. Thornton. Custodian-based information sharing. Comunications

Magazine, 50(7):38–43, 2012.
[13] Z. Qu and J. Burke. Egal car: A peer-to-peer car racing game

synchronized over named data networking. Technical report, University
of California, Los Angeles, REMAP, 2012.

[14] Z. Zhu and C. Bian and A. Afanasyev and V. Jacobson and L. Zhang.
Chronos: Severless multi-user chat over ndn. Technical report, PARC,
2012.


