NDN: Plug and Play

John Dellaverson, Tianyuan Yu, Eric Newberry, Zhiyi Zhang, Lixia Zhang

Internet Research lab @ UCLA

ACM ICN 2020 Tutorial

September 22, 2020

What is Plug And play

- Usually refers to the ease of use when first connected.
- Configuration (plug)
 - Configuring something into its operational networked environment
- Connectivity (play)
 - Being able to send and receive packets

How do these steps differ between IP and NDN?

IP Configuration

- One abstraction of IP is simply pipes connecting all nodes.
- What is the goal of IP configuration? Put simply, connectivity to the global internet. This arises naturally from the IP abstraction.
 - IP configuration is to plug a node into an existing connected IP infrastructure.

IP Configuration: Consequences of Simplicity

- Because IP is just about connectivity, everything involving trust happens on a higher layer
- Can't know if talking to the right party over just IP
- Thus vulnerable on its own.
 - Source address spoofing
 - DDOS
 - Biological analogue
- Not to bash IP, just acknowledgement of change in networking

IP Reachability

- Fairly trivial, once config established: just send to either local network or to default gateway.
 - Connectivity vs Reachability
- True reachability somewhat more complex, but irrelevant for edge user.

NDN Configuration – aka 'plug'

- What is NDN Configuration?
 - Plug a new entity into an application namespace. Because trust relations exist within this space, also inherit the trust relations of that namespace with other names.
 - Because asserting trust dynamics here, authenticity is critical.
 - All about Names and Security
 - All configuration can be encapsulated in getting a Name from a relevant application and Certificate from a trust anchor.
 - From there, can retrieve a Trust Schema, can automatically discover namespaces.
 - Does not have to be a one-time thing

NDN Config Visualized

Trust anchor
I runs
/ucla/n

Got the name prefix /ucla/ndn/b from an application, and a certificate from I

Signs as /ucla/ndn/b, moves from 1 to 2

Trust anchor 2. Runs /home

Signs as /home/a

Signs as /ucla/ndn/a

Data Name	Key Name	Anchor
Must prefix /ucla	Must prefix /ucla//key	ucla//ndn/KEY/C/key05
Must prefix /home/a	Must prefix /home/a	/home/KEY/a/key01

Data Name	Key Name	Anchor
Must prefix	Must prefix	/ucla/ndn/KEY/a/key
/ucla/ndn/a	/ucla/ndn/a	01

Signs as /ucla/ndn/d

Data Name	Key Name	Anchor
Must prefix /ndn	Must prefix /ndn//KEY	/ndn/KEY/c/key05

Many Ways to Play

- Once an entity has the aforementioned essential components (Name, Certificate → Trust Schema), can get connectivity in multiple ways:
- Different ways of getting connectivity
 - NDN broadcast self-learning
 - NDND
 - NDN-autoconfig (not actually an auto-configuration system)
 - NLSR

Contrasting ip and ndn configuration

	Primary Focus	Band	Namespace	Security
NDN	Identity and Security	Out-of-band requirements on security and configuration.	Application-level name space	High – packets are signed, means that after configuration can guarantee authenticity.
IP	Connectivity	In-band: because simply setting up connectivity, DHCP suffices.	Topologically named space.	None!

Why the differences?

- IP designed 40 years ago for connectivity
- Modern applications run in DNS namespace & use TLS for security
- NDN is younger, took the opportunity to capture these needs in the design.

TLS – Config and security

- TLS not necessarily the default
 - DDOS attacks already mentioned
 - Majority of websites only using TLS in 2018
- TLS fundamentally can't use this decentralized/local trust model.
 - NDN trust model is local and decentralized

Ways to implement plug and play

- Try to make the 'configuration' stage of plug and play as easy as possible by automating steps
 - Some security steps (e.g. Name, Trust Anchor, Cert) can't be automated
- Provide easy ways to safely input the Trust Anchor + Certificate
 + Name.
- Automate connectivity past that

Our work

- This work is available on on Github
- Relatively simple
- Connects to other machines in one-hop WiFi or Ethernet range
- One machine designated as anchor.
- Other machines request a certificate, receive one (with the name specified by the server).
- Can easily imagine doing this while an application is already running.

Interest: /ndn/config/<requir</pre> ed-info>/<nonce> Identity: Certificate for ndn/config My-ndn/a Identities: My-ndn/a My-ndn/a My-ndn/b /localhost/operator

Enabling applications

NDNSD

- Service discovery and publishing
- Sync over namespaces (e.g. '/discovery/printers')
- Assumes trust relations already configured

npChat

- Decentralized multimedia sharing app
- Works off of application level pub-sub model
- Assumes existing certificates

Future Directions

- Further clarify the difference between IP and NDN Configuration.
- Develop our tools such that they can support more complex cases.
 - E.g. pure consumers, not immediately near one another, etc.
- Develop the automation tools for connectivity.
- Integrate these two sets of tools into a 'plug and play' software that users and developers can use.

Conclusion

- As NDN developers, we should try to understand what the fundamental requirements for configuration are, and pare away extraneous pieces.
- Make 'playing' with NDN as easy as possible.
- Setup and more on this topic in the next talk!