
Named Data Networking Next Phase (NDN-NP) Project

May 2015 - April 2016 Annual Report

Principal Investigators

Van Jacobson, Jeffrey Burke, and Lixia Zhang
University of California, Los Angeles

Tarek Abdelzaher
University of Illinois at Urbana-Champaign

Beichuan Zhang
University of Arizona

kc claffy
University of California, San Diego

Patrick Crowley
Washington University

J. Alex Halderman
University of Michigan

Christos Papadopoulos
Colorado State University

Lan Wang
University of Memphis

Contents

Executive Summary 1

1 Introduction 2

2 Network Environments / Applications 4
2.1 Enterprise Building Automation and Management . 4

2.1.1 Progress towards milestones . 5
2.2 Open mHealth . 6

2.2.1 NDNFit . 7
2.2.2 Progress towards milestones . 10

2.3 Mobile multimedia: ndnrtc (NDN real-time conferencing tool) 11
2.4 Scientific Data Applications . 12

2.4.1 Climate modeling applications . 12
2.4.2 NDN in High Energy Particle Physics (HEP) . 13

2.5 Information Maximization . 13
2.6 Libraries . 14

2.6.1 ndn-cxx: NDN C++ library with eXperimental eXtensions 14
2.6.2 NDN-CCL: Common Client Libraries . 15

2.7 Open Challenges Raised by Network Environment Development 16

3 Security 19
3.1 Name-based Access Control . 19
3.2 NDN DeLorean . 21
3.3 Content Poisoning Mitigation . 23
3.4 Plan For Next Year . 23

4 Distributed Dataset Synchronization 25
4.1 Chronosync and iSync . 25
4.2 Round-Sync . 26
4.3 PartialSync . 27
4.4 Summary and Plan for Next Year . 28

5 Networking 30
5.1 NDN Forwarding Daemon (NFD) . 30

5.1.1 NDN Link Protocol v2 . 31
5.1.2 NFD Management Protocol . 31
5.1.3 Automatic Prefix Propagation . 32
5.1.4 Supporting Mobility and FIB Scaling with LINK . 32
5.1.5 Permanent Faces . 33
5.1.6 NFD on Android . 33

5.2 Routing Protocols . 35
5.2.1 NLSR . 35
5.2.2 Hyperbolic Routing with Adaptive Forwarding Strategy 35

i

5.3 Scalable Forwarding . 37
5.4 NDN/OSCARS Integration . 37
5.5 Plans for the Next Year . 37

6 Evaluation 40
6.1 NDN Testbed: Deployment, Management, Expansion . 40

6.1.1 Lessons Learned from Testbed Use . 40
6.2 Mini-NDN . 41

7 Impact: Education 42
7.1 Education Efforts . 42

7.1.1 UCLA . 42
7.1.2 University of Memphis . 43
7.1.3 Colorado State University . 43
7.1.4 Washington University in St. Louis . 43

7.2 NDN Tutorial at ICN 2015 . 43
7.3 NDN Weekly Seminars . 44

8 Impact: Expansion of NDN Community 46
8.1 The Second NDN Community meeting . 46
8.2 Expansion of the NDN Consortium and Testbed . 46
8.3 The 2nd ACM Information Centric Networking Conference 47
8.4 NDN-Related Workshops . 47

9 NDN Presentations 48

10 Publications 51

ii

FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP) 2016
Report

Executive Summary

The heart of the current Internet architecture is a simple, universal network layer (IP) which implements
all the functionality necessary for global interconnectivity. This thin waist was the key enabler of the
Internet’s explosive growth, but its design choice of naming communication endpoints is also the cause of
many of today’s persistently unsolved problems. NDN retains the Internet’s hourglass architecture but
evolves the thin waist to enable the creation of completely general distribution networks. The core element
of this evolution is removing the restriction that packets can only name communication endpoints. As far
as the network is concerned, the name in an NDN packet can name anything – an endpoint, a data chunk
in a movie or a book, a service, or a command to turn on some lights. This conceptually simple change
allows NDN networks to use almost all of the Internet’s well-tested engineering properties to solve not only
communication problems but also digital distribution and control problems.

Our first several years of NDN design and development efforts tackled the challenge of turning this
vision into an architectural framework capable of solving real problems. Our application-driven architecture
development efforts force us to fill in details, as well as verify and shape the architecture. We translated our
vision into a simple and elegant packet format design, a modular and extensible NDN forwarding daemon,
and a set of supporting libraries. This next phase of the project has focused on deploying and evaluating
the NDN architecture in four environments: building automation management systems, mobile health,
multimedia real-time conferencing tools, and scientific data applications. The implementation and testing of
pilot applications in these network environments further demonstrated our research progress in namespace
design, trust management, and encryption-based access control. Highlights from this year include:

• Continued evolution the NDN Forwarding Daemon (NFD), to support application-driven experimen-
tation with new NDN protocol features.

• Development of an Android version of NFD to promote NDN experimentation on mobile platforms.

• Implementation of a new transport protocol (InfoMax) that can intelligently filter streams of informa-
tion in order to reduce transmitted data volume, while minimizing loss of information.

• A growing portfolio of supporting software libraries, including new APIs, transport mechanisms (Sync,
information maximization), and security functionality, that leverage inherent capabilities of NDN, e.g.,
schematized trust, name-based access control.

• Demonstration of extremely scalable forwarding implementation using a billion synthetic names.

• Implementation and evaluation of hyperbolic routing performance to understand its feasibility in sup-
porting NDN’s interdomain routing.

• Multi-faceted evaluation of the architecture, from instrumentation of applications on the testbed, to
uses of ndnSIM and the Mini-NDN emulator environment.

• Continued uses of NDN in the four courses taught by principal investigators.

• The second annual NDN Community meeting hosted by the NDN Consortium to promote a vibrant
open source ecosystem of research and experimentation around NDN.

We have made tremendous progress in the last five years, and a larger community of information-centric
networking research has evolved in parallel. We also helped NIST prepare an NDN workshop hosted by
NIST at end of May 2016. Our progress revealed the importance of demonstrating NDN capabilities in IoT
and big data environments, and highlighted the need for accessible software platform support and emulation
capabilities to facilitate R&D on both the NDN architecture and applications that leverage it. We have
received a year of supplement funding to complete four tasks: 1) completing and disseminating native NDN
applications and associated design patterns, 2) demonstrating NDN scalability; 3) documenting and releasing
reference implementations, and 4) documenting NDN design decisions and lessons learned.

1

Chapter 1

Introduction

This report summarizes our accomplishments during the second year of the “Named Data Networking Next
Phase (NDN-NP)” project. This phase of the project focuses on deploying and evaluating the NDN architec-
ture in four environments: building automation management systems, mobile health, multimedia real-time
conferencing tools, and scientific data applications.

The first two environments represent critical areas in the design space for health IT and cyberphysical/IoT
systems, respectively. For the building automation pilot application, we are in the process of demonstrating
two uses on the UCLA campus: real-time monitoring from a web browser via basic Interest-Data exchange,
and general SQL query support against historical data for report generation. For the mHealth applica-
tion, we completed an initial end-to-end design and implementation of the NDNFit application, including a
revised namespace design that supports named-based access control. We also developed an identity man-
agement Android application based on schematized trust, designed and implemented data transportation
protocols, designed and implemented NFN integration mechanism, and implemented name-based access con-
trol (NAC). Mobility support in this application has driven several practical elements of the architecture:
autoconfiguration, prefix registration, identity management, and encapsulation / LINK support.

Our real-time conferencing application has enjoyed the most real-world testing from the NDN collab-
orators at various campuses, as we forced ourselves to use it for some of our regular NDN seminars and
project meetings to thoroughly stress-test it (and us!). The feedback was invaluable, revealing the need for
applications to fully exploit, and verify, network-layer features in supporting the detection of latest data
available, adaptive consumer retrieval, and performance optimizations.

The scientific data management environment emerged during the original FIA project as an ideal use case,
and came with enthusiastic collaborators who enabled us to show immediate practical use of our research
ideas to make their day jobs easier. A complementary project at one of the NDN campuses (UIUC) finalized
a new transport protocol that intelligently filters streams of information in order to reduce transmitted data
volume, while minimizing loss of information.

This application-driven approach compelled several concrete and fundamental architecture advances,
but also required the development and extension of a set of software libraries that not only instantiate
the evolving core of the NDN network architecture, but also support the experimentation that informs its
evolution. To allow broader experimentation with NDN technology, and in particular experimentation in
real mobile environments, we made a prototype port of our reference forwarding daemon implementation
on Android platform (NFD-Android). We also implemented two different approaches to routing in NDN
networks (link-state and hyperbolic routing with adaptive forwarding) to support comparative evaluation of
these approaches in various scenarios.

The software development dimension of this project exceeded even our high expectations – but in the
process we created a lasting and powerful artifact of the FIA program: a patent-free and open source software
code base to encourage further architecture research experimentation and collaboration with around the
world. We made one major and several minor releases of our core NDN forwarder (NFD) and supporting
libraries, and support living documentation as well as a mailing list of over 100 people.

2

Some of the most fundamental architectural advances in the last year have related to security; specifically,
codifying the previous year’s invention of a security-conscious approach to namespace design that we call
schematized trust, application of this approach to name-based access control, and development of mechanisms
to support the authenticity of long-lived data, i.e., packets whose digital signature may have expired at the
time of data consumption.

We continued progress on data synchronization as a significant NDN communication primitive. In NDN,
data synchronization between multiple nodes supports basic services, such as public key distribution, file
sharing, and route distribution. In addition to ChronoSync (which uses log-based representations of informa-
tion) and iSync (which uses a two-level invertible Bloom filter structure to speed up dataset synchronization),
this year we developed PartialSync, which enables individual consumers to synchronize with selected part of
the dataset namespace, a popular usage pattern in publish-subscribe systems.

In the area of scalable forwarding, we completed our software implementation and evaluation of a scalable
FIB longest name prefix lookup design based on the binary search of hash tables. We demonstrated 10 Gbps
forwarding throughput with one billion synthetic longest name prefix matching rules, each containing up to
seven name components. To the best of our knowledge, this is the largest dataset that has been studied for
longest name prefix lookup.

We continued our commitment to multi-faceted evaluation of the architecture, from deployment and
instrumentation of applications on the expanding NDN testbed, use of applications by team members, to
uses of ndnSIM and the Mini-NDN emulator environment. We also documented four campuses use of NDN
in the classroom and curriculum, and the growing NDN consortium to facilitate private and public sector
engagement with the NDN project. We ended the second year of NDN-NP project with ten submissions to
ICN 2016 conference, which report on various results of the project.

We have made tremendous progress in the last five years, but unexpected collaborations have revealed
the value of further demonstrating NDN capabilities in IoT and big data environments, and highlighted
needs for accessible software platform support and emulation capabilities to facilitate R&D on both the
NDN architecture and applications that leverage it. We are honored to have recently received a year of
NSF supplement funding to complete four tasks: 1) completing and disseminating native NDN applications
and associated design patterns, 2) demonstrating NDN scalability; 3) documenting and releasing reference
implementations, and 4) documenting NDN design decisions and lessons learned. We also hope to use this
coming year to further organize and inspire the growing research community to develop new applications
around NDN. We plan to offer a whole-day tutorial on NDN application development at the ICN conference,
focused on enabling others to build on our success with application-driven architectural research.

3

Chapter 2

Network Environments / Applications

Contributors
PIs Jeffrey Burke, Van Jacobson & Lixia Zhang (UCLA), Tarek Abdelzaher (UIUC), Christos

Papadopoulos (Colorado State)

Grad Students . . Dustin O’Hara, Ilya Moiseenko, Wentao Shang, Yingdi Yu, Haitao Zhang (UCLA);

Jongdeog Lee, Shiguang Wang (UIUC)

Undergrads Akash Kapoor, Yang Sheng (UIUC)

Staff Adeola Bannis, Jiawen Chen, Peter Gusev, Alex Horn, Jeff Thompson, Zhehao Wang,

(UCLA); Researcher: Alex Afanasyev (UCLA)

As part of the NDN “Next Phase” research, the NDN project team proposed two network environments,
Enterprise Building Automation & Management and Open mHealth, and one application cluster,
Mobile Multimedia, to drive our research, verify the architecture design, and ground evaluation of the next
phase of our project. The two environments represent critical areas in the design space for next-generation
Health IT and Cyberphysical Systems, respectively. They also extend work started in the previous NDN FIA
project on participatory sensing and instrumented environments to focus on specific application ecosystems
where we believe NDN can address fundamental challenges that are unmet by IP.

2.1 Enterprise Building Automation and Management

For our purposes, Enterprise Building Automation and Management covers the intersection of three critical
sub-areas: industrial control systems (ICS), including supervisory control and data acquisition (SCADA) and
so-called smart grid [5], enterprise networking, and the Internet of Things (IOT) movement [2]. Our pilot
application for this network environment is an initial NDN-based building monitoring system (NDN-BMS)
deployment at UCLA. We are building an NDN-based collection, storage, and query system for real UCLA
Facilities Management data collected from UCLA’s Siemens building monitoring system. (As of April 2016,
we have bridged a few hundred live data points from UCLA’s campus monitoring to the NDN testbed. We
are targeting several thousand points at up to 1Hz sample rate per point by the end of the project.) We
are initially focusing on read-only access to sensing data. The 800 or so points of monitoring that we will
have access to in 2016 generates 24M rows per year and cover a few buildings and a few data types. They
include data from electrical, chilled water, and heating-ventilation-air-conditioning (HVAC) systems, as well
as other sensors.

Our high level objectives for the pilot application are to support two dominant uses for this data on the
UCLA campus: real-time monitoring from a web browser via basic Interest-Data exchange, and general SQL
query support against historical data for report generation. This section summarizes our progress on storage
and query support of building management data.

4

Data namespace

User namespace

/ndn/app/bms

UCLA/PublicHealth/A203/xfmr-6.dmd.inst

data/ElectricityDemand/aggregation/avg

20150825T000000/20150826T000000

Application prefix

Hierarchical location

Data type

Timestamp

/ndn/app/bms/user “User” prefix

zhehao@remap.ucla.edu User identity

Access control namespace

/ndn/app/bms/read Access control prefix

ucla/Melnitz/data/electricity Group name

Figure 2.1: Example BMS data name

Mini-BMS [13] extends the NDN building automation management system work. This year’s work
incorporates data aggregation, schematized trust [14], name-based access control [15], and a visualization
unit. Mini-BMS uses Mini-NDN to emulate nodes in a larger BMS network driven by real data from the
UCLA campus. Each node keeps outstanding Interests for the data produced by its child nodes to gather
the data for aggregation in a fixed time window. The system uses a hierarchical trust schema in which the
certificate of a child node is signed by its parent, and a predetermined root of trust installed on each node.
Figure 2.1 gives an example of the naming conventions for BMS data, and Figure 2.2 illustrates the structure
of the deployed system, which makes historical raw and aggregated BMS data from UCLA campus available
on the NDN testbed.

2.1.1 Progress towards milestones

We summarize progress toward our proposed milestones for this specific environment:

• Review limitations in current IP-based architecture, for Facilities Management needs. (Y1) In progress,
continued in supplement work. Some of the insights from this process are captured in [9].

• Design NDN namespace, repository, trust and communication model for use cases, such as energy
management, new building commissioning, feedback control. (Y1; updated in Y2) Schematized trust
was designed and implemented in Year 2, along with an initial design for name-based access control.
Because our EBAMS data starts in hierarchical namespaces on the application side, these approaches
work well, though present some limitations, also described most recently in [9].

• Implement low-level NDN applications, such as energy management data gathering. (Y1) In progress,
to be continued in supplement work. Our expectation in the supplment period is to bridge IoT
considerations inspiring for new types of EBAMS with the infrastructure-based systems that we have
started with.

• Preliminary embedded platform support. (Y2) Completed, described in the previous report. We con-
tinue to explore support for embedded platform through hackathons and other efforts outside of the
NP funding, which has provided valuable insight into how the NDN approach can be adapted for

5

Aleph

UCLA

Dentistry Franz_Hall

A3-063 83-055 C417 A173

sensor1 sensor2 sensor1 sensor2 sensor1 sensor2 sensor1 sensor2

BMS gateway node …

Testbed

Browser
consumer node

Testbed nodes

Mini-ndn nodes

Visualization nodes

BMS gateway nodes

Figure 2.2: BMS deployment structure

constrained and embedded platforms.

• Integrate UCLA building data (10-20 buildings) into NDN testbed, (Y2) Done, with a paper forthcoming
during the supplement period on the Mini-BMS project described above.

• Implement high-level NDN application for enterprise building monitoring, applying distributed 3D vi-
sualization work done in the first FIA project. (Y2) UCLA will complete visualization work during
the supplement period, with an initial namespace visualizer in September 2016.

2.2 Open mHealth

Figure 2.3: The Open mHealth architecture uses a
data-centric hourglass model, where the interoperabil-
ity layer (“thin waist”) is based on standardized data
exchange. [3]

Mobile health (mHealth) has emerged as an impor-
tant market and a key area of Health IT, a national
priority. The Open mHealth project [3] led by Deb-
orah Estrin (Cornell) and Ida Sim (UC San Fran-
cisco) proposes a thin waist of open data interchange
standards (Figure 2.3) to enable an ecosystem of
sensing, storage, analysis, and user interface com-
ponents to support medical discovery and evidence-
based care. Specifically, the Open mHealth archi-
tecture includes standardized personal data vaults
and health specific data exchange as the architec-
ture’s narrow waist, which provides health-specific
syntactic and semantic data standards, patient iden-
tity standards, core data processing functions such
as feature extraction and analytics and data stores
that allow for selective, patient-controlled sharing.

The focus on data exchange as the backbone of
the application ecosystem makes Open mHealth an
excellent network environment to both drive and
evaluate NDN. The NDN architecture embeds data
exchange as its narrow waist, which provides a stan-
dard way to manage identity and trust relationship,
provides provenance via the signature, and secures
data at generation, with data owners directly con-
trolling data sharing.

6

Figure 2.4: data flow for a single user of NDNfit

Our high level goal is to build a pilot NDN-based
fitness application and system, which is compatible
with Open mHealth paradigm, to capture, process
and visualize users’ time-location data. Figure 2.4
shows the data flow for a single user who uses NDNFit to retrieve: 1) fitness/activity metrics, 2) walking or
running path visualizations, and 3) location-based content during exercise - all through the same ecosystem,
but from different content providers.

This year, eight sites are collaborating on design and development of this application:

• UCLA REMAP - application design; library support; web-based visualization; values in design.

• UCLA IRL - architecture implications; repository; library and forwarder support; trust and security

• University of Arizona - forwarder support.

• University of Michigan - trust and security.

• University of Basel - data flow processing using NFN (Named Function Networking).

• Anyang - Ohmage capture application port.

• WUSTL - testbed support.

• UCSD - project management support.

2.2.1 NDNFit

This year, we completed an initial end-to-end design and implementation for the Open mHealth network
environment, moving forward with the initial design developed last year. We revised the namespace design
based on peer review and to support name-based access control, implemented the mobile capture application,
designed and implemented an identity management Android application based on schematized trust, designed
and implemented data transportation protocols, designed and implemented NFN integration mechanism, and
implemented name-based access control (NAC) [15]. We also started to revise the previous autoconfiguration
support mechanism required to deploy this application in the wild. This work is implemented in a demo
system running on the testbed supporting a capture application, a data storage unit (DSU) and two data
processing units (DPUs): one NFN DPU and one native NDN DPU.

Namespace

Figure 2.5 shows the second version of the proposed data namespace. Over the last year, we updated
this namespace based on the requirements of name-based access control. The user publishes encrypted

7

/org/openmhealth

<user-id> <service-id>(DPU, DVU)

key

<version>

key

<version>

<group-id>

key

<version>

<member-id>
(user-id of the members)

key

<version>

devices

<device-id>

key

<version>

Dataread

fitness

Physical_activity

D-KEY E-KEYfitness

Physical_activity D-KEY E-KEY

D-KEY E-KEY

<start_timestamp_hour> <start_timestamp_hour>

<end_timestamp_hour> <end_timestamp_hour>

for

<consumer-id>

ENCRYPTED
PRIVATE KEY

PUBLIC KEY
DATA OBJECT

time_location bout

<timestamp> catalog C-KEY

<segment>(opt.)

DATA OBJECT

<timestamp>

<version>

DATA OBJECT

<start_timestamp_hour>

<end_timestamp_hour>

<E-KEY name>

SYM KEY
ENCRYPTED BY

E-KEY

catalog

<timestamp>

<version>

DATA OBJECT

<timestamp>

statistic type

<begin> <end>

source

running walkiing stitingDATA OBJECT

Calories expended, etc.

C-KEY

<start_timestamp_hour>

<end_timestamp_hour>

<E-KEY name>

SYM KEY
ENCRYPTED BY

E-KEY

bout

D-KEY E-KEY

Figure 2.5: NDNFit Namespace, version 2.

health data under data branch and publish keys under corresponding entries in the read branch. The first
implementation of NDNFit captures and processes time-location data. Data is fetched by time range, and
data names include the timestamp as the last component.

NDNFit Android Application

Anyang University and UCLA IRL have built NDNFit, an Android application (interface depicted in Figure
2.6), that captures time-location data, produces Data packets and temporarily stores these Data locally. It
uses the NDNFit application protocol (Section 2.2.1) to upload data to the DSU.

Identity manager

The NDNFit application is one of the first where we explore user-facing application management of the chain
of identities (expressed in certificates) used for signing of data packets. The NDNFit application as currently
implemented uses three types of identities: user, device, and application. An Android-based identity manager
(ID manager) handles user and device identity generation, signature requests, and signing of certificates for
these identities as needed. A new user requests their own subnamespace in the Open mHealth top-level
namespace, and an authority for that namespace grants the request by signing a certificate corresponding
to the user identity. In the current implementation of the system, the Android ID manager generates the
user identity and employs web services to request an authority server sign the certificate, using email for
user authentication. Lower-value keys are then authorized by the high-value key that is part of the user
identity. For example, after the user identity is created, the ID manager generates a per-device identity for
the phone it is running on, and the user identity signs the device identity. Then, the NDNFit generates an
application identity upon its first launch, which it requests that the ID manager sign with the device identity.
(The application then generates an instance identity on startup or every few hours, which is signed by the
application identity, though this is not implemented yet.) The lower value keys actually sign data, which
can be verified as an authorized part of the Open mHealth namespace by walking the trust chain all the
way back to the Open mHealth authority’s signature on the user identity. Figure 2.7 illustrates an example
trust relationship. The application certificates, device certificates, and user certificates are all published in
the DSU to ensure they are available for verification.

8

Figure 2.6: NDNFit Application UI

/org/openmhealth

/org/openmhealth/somebody

/org/openmhealth/somebody/someIMEI

signs

signs

/org/openmhealth/somebody/someIMEI/ndnfit
signs

Open mHealth root

User identity

Device identity

Application identity

Figure 2.7: User, device, and app identity for NDNFit application

9

Figure 2.8: Use packet encapsulation to convert NDN packets to NFN packets

Data transport protocol

As part of finalizing the application design, we developed specific data transport protocols for cases where
basic Interest-Data exchange was insufficient, including notification of new data and efficient retrieval of
data with unpredictable names using catalogs (manifests). The approach taken in implementing the protocol
addresses three challenges for communication between mobile devices and data storage units (DSUs): (1)
intermittent connectivity; (2) fetching patterns for data named with a timestamp component that can’t be
predicted by the consumers; (3) power and storage constraints. The DSU implements an application pattern
in which permanent storage “watches” namespaces of interest for new data, and then issues Interests to
retrieve that data, which it stores and republishes. Briefly, the specific approach includes a signal interest
that a mobile devices uses to notify a DSU of new data, a catalog the mobile provides to the DSU so the
DSU knows what names to fetch, and a confirmation request Interest.

NFN integration mechanism

An interesting research challenge motivated by the Open mHealth environment is how to support distributed
data processing. NDNFit uses NFN (Named Function Networking) [12] to implement DPUs. This year, we
explored approaches to integrating NFN with NDN. The current implement of NDNFit provides a service
that rewrites and translates packets from the NDN to NFN formats while preserving the trust relationships
and access control used in NDNFit. Figure 2.8 shows a concrete translation example.

2.2.2 Progress towards milestones

We summarize progress toward our proposed milestones for this specific environment:

• Review limitations in current IP-based architecture for Open mHealth needs. (Y1) Completed previ-
ously.

• Design namespace, repository, trust and communication model for use cases, e.g., diabetes or PTSD
treatment (Y1; updated in Y2) Finalized and implemented the complete design for the fitness use case.

• Repository implementation providing backing storage for prototype applications. (Y1) Complete along
with supporting security components.

• Integrate named data networking into the Ohmage mobile data collection framework. (Y2) Done on
the mobile side. For server-side integration, after further experimentation we deemed it unnecessary
to generate a complete application; instead, we designed and integrated a native NDN approach for
data processing in collaboration with the University of Basel and Prof. C. Tschudin’s group.

10

PC1

C2

L1 L2

L3

DRD1 = L1+L2

DRD2 = L3

R

Figure 2.9: Data Retrieval Delays in 1-to-2 RTSD fetching scenario: C2 experiences smaller DRD value
when it starts fetching after the C1 and receives cached data from the R.

• Pilot user-facing application using NDN, for testing by Open mHealth team. (Y2) We completed all
components and integrated them into a demo system; we plan further work during the supplement to
visualize the underlying system operation.

2.3 Mobile multimedia: ndnrtc (NDN real-time conferencing tool)

This year, we continued to develop and evaluate ndn-rtc, a complete real-time videoconferencing application
based on the WebRTC library and VP8 codec. This application is helping us understand the challenges of low-
latency communication over NDN. We are using it to explore the potential to shift real-time communication
models from push-based to pull-based. In ndn-rtc, the producer’s main task is to acquire video and audio data
from media inputs, encode it, pack into network packets and buffer it to respond to incoming Interests. The
NDN model shifts capability and control to the consumer, which selects streams based on user requirements
and performance, leveraging NDN to enable scalable delivery at the network layer.

In addition to the ndn-rtc library, we built ndncon, GUI application on top of NDN-RTC that we hope
can serve the NDN community’s audio-video conferencing needs while leveraging the NDN Testbed. We
had the ambitious goal of the NDN team using of ndncon for internal weekly meetings and seminars by the
end of the project. We have been testing the software since April 2016 in order to improve and fine-tune
our algorithms, and to better understand performance on the NDN testbed. We elaborate on the following
aspects of testing further in this year’s joint publication with Panasonic Research [6]:

• Detecting the latest data available. For real-time applications, we have set the design goal that
consumers should be able to retrieve the latest data available from a producer without requiring their
interests to directly reach that producer. This enables scaling up the number of consumers without
impact on the producers. Conceptually, consumers aim to retrieve the most recent data from the
network rather than from the producer. At a high level, this approach works: our experiments suggest
that in multi-consumer scenarios for real-time data, only one consumer typically retrieves data directly
from the the original producer, while others receive cached data (Figure 2.9). However, a challenge
remains in how to most quickly and accurately establish the latest data available from the network when
stream consumption is bootstrapped or when network connectivity changes. We refined techniques this
year based on detecting stable values of inter-arrival delays of incoming packets. (Intuitively, cached
data arrives as a function of network performance while fresh data arrives according to the original
signal sample rate.)

• Adaptive consumer retrieval. New Interest pacing techniques enable consumers to tune interest
expressions in order to adapt to changing conditions, like buffer starvation or old data arrival.

• Performance improvements. We improved overall library performance and robustness by im-
plementing single-threaded consumers, asynchronous non-blocking logging, CPU load and memory
footprint optimizations.

• Real-world testing. We simulcast several NDN seminars via ndncon, which revealed important issues

11

Consumer
Interest
PipelineData Buffer

ADU
processing

ADUs

Signalling

NDN

Producer
ADU

generationSegmenter

Segments

ADUs

Cache PIT

Interests/Segments

Interests

Segments

Signalling

Figure 2.10: NDN consumer and producer conceptual design.

such as CPU and memory load of NFD, interactions of testbed strategy configurations on certain hubs,
properly configured and functioning testbed prefix auto-registration and auto-propagation, and user
certificate management.

The applications and architecture teams dedicated significant effort to documenting and critiquing gen-
eralizations of the ndn-rtc design. The applications team has been adapting the design (2.10) to other NDN
applications that require real-time data dissemination: live person tracking (OpenPTrack) and distributed
control system for live performance (Ananke) [6]. The architecture team provided feedback and offered al-
ternatives based on years of TCP/IP-based conferencing experience. This collaborative approach motivated
further implementation work to support new experimentation. To support cross-team experimentation with
NDN-RTC, and research on the impact of forwarding strategy and congestion control algorithms on its per-
formance, we developed a new cross-platform headless application, supporting OSX and Ubuntu. It can be
built from sources or downloaded as a part of an NDN-RTC Docker image for easy setup.

2.4 Scientific Data Applications

Through a combination of this project funding, other NSF funding, and outside support and collaboration,
we continued exploring NDN support for scientific data applications, in particular in the climate science and
high energy physical science communities.

2.4.1 Climate modeling applications

Managing climate datasets is challenging due to their size, diversity, vast geographical distribution, number of
files and lack of uniform naming structure. For example, CMIP5 (Coupled Model Inter-comparison Project)
data is about 3.5 Petabytes in size and distributed among more than twenty institutes worldwide. CMIP5
datasets are distributed via a P2P system called ESGF, composed of about 20 independent nodes located
around the world. ESGF nodes are loosely synchronized; they serve CMIP5 datasets, but also serve local
datasets, available only from that node. The latter requires that users know which node hosts the local
datasets.

We developed an application (ndn-sci) that provides efficient dataset publishing, discovery and retrieval
using NDN. Last year we reported on software we developed that translates climate file names to uniform
NDN names to ease data management. We walked all working ESGF nodes and found approximately 2.7M
unique names from those sites. We converted them to NDN names using this translator and included them
in our catalog. The purpose of the catalog is to help scientists discover the NDN names of the datasets they

12

want. After discovery, users request each dataset by providing the name to NDN. Discovery can happen in
three ways: (a) through a standard name component search and the catalog returns all names containing
those components, (b) through typing in the exact name of the dataset, in which case the UI helps through
a name component autocomplete function (presenting the user with all possible options as the user types
the name), and (c) through a expanding portions of the entire hierarchical namespace and selecting the
datasets the user wants. The UI also allows for staged data transfers, where the user initiates a transfer
from one remote machine to another. Such transfers are useful for example, when data needs to move from
a supercomputer to a repository.

An interesting example is the update control we implemented in the catalog. A common requirement is
that only namespace owners can make changes in the catalog about the namespaces assigned to them. In
other words, if CSU has or wants to insert names in the catalog, only CSU should be allowed to do so. This
simple, yet powerful control was trivial to implement with NDN. We used standard NDN signatures to ensure
that only legitimate namespace owners can publish datasets under that namespace by comparing the names
of the datasets being inserted or deleted with the signature of the publisher that requests these actions. The
catalog is currently serving a subset of the CMIP5 data and is running on our science testbed over ESnet. We
demonstrated the software at Supercomputing 2015 [8] and documented it in several publications [11, 4, 10].
All climate science NDN applications and tools are under active development.1

2.4.2 NDN in High Energy Particle Physics (HEP)

As we described in last year’s report, the HEP community has similar data management requirements as the
climate community. For example, the HEP community generates petabytes of data, that is distributed via
a tiered system around the world. The HEP community has developed its own distribution system called
xrootd, that among other things is responsible for data publishing, discovery and distribution.

At SuperComputing 2015 we also demonstrated that the software we developed for the climate appli-
cations can be used in scientific domains such as HEP. We used the same catalog software to serve HEP
data. The only change was the use of a different namespace that was appropriate for HEP dataset names.
The namespace specification is a parameter provided to our catalog. We are still working to identify access
patterns for HEP data, which will help us quantify how much NDN can improve HEP workflows over IP.

2.5 Information Maximization

UIUC (PI Tarek Abdelzaher) finalized a new transport protocol that intelligently filters streams of informa-
tion in order to reduce transmitted data volume, while minimizing loss of information. Infomax is motivated
by the emergence of IoT and sensor-filled environments, and the advent of social networks that democra-
tize information broadcast, propelling us into a world of data overload. The growing disparity between the
amounts of data generated and what suffices to meet application information needs suggests that an in-
creasingly important network capability required to support networked applications of the future will be one
of data sampling as a means of summarizing large (remote) data sets. Current application models require
retrieving the entire data set regardless of the granularity of detailed required, followed by discarding all but
the desired samples. Infomax is a generic transport protocol that can sample data in a consumer-controlled
manner, while minimizing information loss resulting from non-delivery of the rest of the data set.

Infomax offers a producer/consumer API. To share data, the application on the producer side initializes an
Infomax producer construct and specifies a name prefix associated with produced data. The application can
then add data to the specified name subtree using a produce primitive. On the consumer side, the application
specifies data of interest using a named prefix, which identifies a subtree and creates the receiving end for
content that lives in this subtree. A consume primitive allows the application to retrieve a single sample.
The application can call consume repeatedly until it retrieves a sufficient number of samples. The protocol
ensures that the consumer receives samples in an order that maximizes coverage, i.e., samples of different
large data clusters first, followed by samples of smaller sub-clusters that progressively refine the original

1https://github.com/named-data/ndn-atmos

13

https://github.com/named-data/ndn-atmos

clusters, until the consumer achieves the desired level of detail. Retrieval continues until the application
stops calling the consume method.

The protocol assumes that hierarchical data object names reflect object similarity. Hence, more similar
objects share a longer name prefix. Accordingly, consumers retrieve samples in a minimum shared prefix
first order. Note that objects that share the minimum prefix have the least similarity, thus minimizing
unnecessary redundancy and overlap among samples. The protocol determines the retrieval order solely
according to data names, offering a generic way for summarization/sampling that leverages naming in NDN.
This algorithm is similar to a breadth-first traversal of the specified name tree. Since the producer knows
the exact tree topology, but the consumer only knows the general prefix that names the tree, the producer
composes an ordered list of objects in the tree, in a longest-shared-prefix-first order. When a consumer
first contacts the producer, the protocol (of the Infomax socket) requests this list first. Intermediate routers
may cache this list per normal NDN operation. Consumers receiving the list then proceed with requesting
objects sequentially, thereby receiving a diverse sampling first, then receiving progressive refinements due to
the way objects are ordered. Different consumers can stop at different points during this retrieval process,
hence receiving summaries of different degrees of detail.

This year, UIUC integrated Infomax with the NDN producer/consumer APIs, which include three data
retrieval functions: simple data retrieval (SDR), reliable data retrieval (RDR), and unreliable data retrieval
(UDR). SDR retrieves a single NDN data packet up to 8KB. Both RDR and UDR allow larger packets,
but segment them into multiple packets. Infomax retrieves (a sampling of) entire content trees, not single
data objects, thus it complements the aforementioned data retrieval protocols. The Infomax Data Retrieval
(IDR) protocol sits on top of the other three and can use any of them to retrieve the individual objects, but
uses RDR by default.

To test and evaluate the Infomax protocol, UIUC developed a Twitter feed summarization application
(Iphone app). A producer downloads Twitter feeds on several topics of interest including disasters, civil
unrest, and other newsworthy events. Consumers can then download their own customized news summaries
of these events, controlling both the topics of their news summaries and the degree of summarization.
The key in enabling this application was to create an appropriate name space for tweets that satisfies the
Infomax imperative: namely, objects (tweets) that are more similar should share a longer name prefix. The
implemented naming solution determined the fraction of shared tokens (words) between pairs of tweets as
a measure of logical distance between them, then recursively applied K-means clustering on the resulting
graph. Individual tweets were hierarchically named based on their cluster/subcluster. Subsequent testing
demonstrated the efficacy of this approach at summarizing events and allowing drill-down into sub events.
UIUC is preparing the application for sharing via the Apple AppStore. Infomax implementation and its
application examples are currently being prepared for publication in a book chapter [7].

2.6 Libraries

Libraries are a critical part of NDN research as they link work on the protocol and forwarder with application
development. We summarize recent activities and their motivations, as well as research in the future of
application programming interfaces for NDN.

2.6.1 ndn-cxx: NDN C++ library with eXperimental eXtensions

To promote and support robust, effective, and diverse experimentation with the NDN architecture, and
support development of the new forwarding daemon (NFD), in 2014 we forked the NDN Common Client
Libraries C++ library development effort (NDN-CPP) and developed ndn-cxx, C++ with eXperimental
eXtensions, a C++ library that implements all NDN protocol abstractions and provides a foundation for
cutting edge experimentation with NDN technology. In particular, ndn-cxx is used to prototype new ar-
chitectural features, which may then be incorporated into NDN-CPP. The development of ndn-cxx follows
an application-driven iterative approach, taking feedback from application developers on how they use and
interact with the library, what challenges they experience, and what changes they would like to see. We also
strive to maintain stability within ndn-cxx release cycles.

14

We have continued development of the ndn-cxx library to ensure that it implements all NDN protocol
abstractions and provides a foundation for cutting edge experimentation. Since May 2015 we have made five
minor releases and one major release introducing variety of functionality:

1. support for Link abstraction, to enable data retrieval when the data’s prefix is not globally reachable
or when data needs to be retrieved from a moving producer.

2. implementation of the NDNLPv2 NDN Link Layer Adaptation protocol, to enable features such as
packet processing instructions (next-hop choice, cache control, etc.), fragmentation and reassembly,
and packet loss detection.

3. a Dispatcher helper class to simplify server-side implementation of the NFD management protocol.

4. Support for the upcoming PIB feature2

5. the PartialName type, which represents an arbitrary sequence of name components (while Name rep-
resents an absolute name).

6. Generalized signing API in KeyChain.

The following applications and projects continue to use ndn-cxx:

• NFD - NDN Forwarding Daemon

• NLSR - Named-data Link-State Routing protocol

• repo-ng - a new implementation of NDN repository

• ChronoChat - Multi-user NDN chat application

• ChronoSync - Sync library for multiuser real-time applications for NDN

• ndn-tools - A collection of NDN command-line tools (ndnping, ndn-traffic-generator, ndndump, etc.)

• ndnSIM 2.0 - NDN simulation framework for NS-3 simulator engine

• ndns - Domain Name Service for Named Data Networking

• ndn-atmos - software suite to support ongoing climate model research at Colorado State University,
Berkeley and other institutes

• ndn-group-encrypt - group-based encryption library for NDN applications

2.6.2 NDN-CCL: Common Client Libraries

The NDN Common Client Libraries (CCL) provide a common application programming interface (API)
across multiple languages for building applications that communicate using NDN. They incorporate features
often first introduced in ndn-cxx. Currently, the CCL is implemented in C++, Python, JavaScript and Java,
with support for pure C and C# .NET. Since May 2015 our library development has included integrating
security research results in schematized trust [14] and name-based access control [15], incorporating other
new features motivated by the network environments, and improving performance:

1. To support resource-constrained devices in our BMS and mobile health environments, we extended
support for signing and verifying HMAC signatures to PyNDN and the in-browser NDN-JS library.
We also added support for a generic signature type, which lets the application compute the signature
value and supply the encoding.

2. To enable authentication using identity and keys that persist across browser sessions, we added support
to NDN-JS for IndexedDB storage, a web standard available in major browsers like Firefox and Chrome.

3. We also added support for a new package called cryptography [1], which more efficiently handles RSA
and ECDSA signatures for devices powerful enough to use them.

2The Public Information Base (PIB) stores the public portion of a user’s cryptography keys.

15

4. While signature operations dominate Data packet processing, encoding/decoding operations dominate
Interest processing, which can challenge resource-constrained devices. We added optional support for C
bindings to PyNDN, to directly use NDN-CPP Lite, which doubles the speed of the encoding/decoding
operations.

5. Our mHealth application uses the Link object, so we implemented the capability to encode/decode a
Link object and to add it to an Interest packet with a Selected Delegation field.

6. All of our environments are sensitive to power consumption, which means asynchronous I/O capabilities
offer a huge advantage. (The CPU can stay relatively idle until it receives a network packet.) We
extended the NDN-CCL API to allow an application to use its asynchronous library of choice, in a
thread-safe manner to support multi-threading.

7. We added support for notifying applications about negative acknowledgment (NACK) messages, which
the new NDN network link protocol uses to signal a reachability failure.

8. For improved security, the real-time videoconferencing application needs to create and serve per-session
certificates in addition to regular data packets. So, we updated the MemoryContentCache so the
application needs to register only one prefix with the forwarder but can internally dispatch incoming
interests based on filters for different types of data being produced.

9. To support requests from the research community using the NDN software platform, we added support
for Visual Studio using NDN-CPP, and created an NDN-DOT-NET library to support use of NDN
in C# .NET applications. We created the NDN-DOT-NET library by adapting a converter which
transforms Java code to C#. Therefore, new features in jNDN are made available for .NET applications
without needing to maintain an explicit C# library for NDN.

10. We removed methods from NDN-CCL due to deprecation of the older NDNx forwarder, simplifying
the API and code base.

NDN-CCL is used by applications including:

• ndn-rtc, ndncon - Real-time audio/video conferencing over NDN (NDN-CPP)

• ndn-bms - Building management pilot application (NDN-JS)

• ndn-opt - OpenPTrack publisher / consumer (NDN-JS; NDN-CPP)

• NDNFit - NDN Fitness application (jNDN, initially)

• FoS - Control system for REMAP “future of storytelling” project (NDN-JS; PyNDN)

• ndn-iot - IoT toolkit on Raspberry PI (PyNDN)

• AmbiInfo - Ambient informatics installation by REMAP (PyNDN on Raspberry PI)

• ndnfs - NDN File System, second version (NDN-CPP)

• Routing status - NDN routing status page (NDN-JS)

2.7 Open Challenges Raised by Network Environment Develop-
ment

• Mobility support is a critical and not completely implemented aspect of the NDN platform, though
significant progress has been made in the research and design of mobility techniques. The Open
mHealth network application has been an excellent driver for several important elements of a practical
and holistic NDN approach to mobility - autoconfiguration, prefix registration, identity management,
and encapsulation / LINK support.

• Name confidentiality is an open issue, particularly well-motivated by Open mHealth, which has gener-
ated significant discussion (though no results yet) over the last year - with potential solutions ranging

16

from partial name encryption to encapsulation. This discussion also emphasized the importance of
explaining general privacy benefits from the NDN architecture in comparison with TCP/IP.

• While name-based access control provides initial insight into how granular data-centric encryption can
be achieved in practice, two significant questions have arisen: 1) how to keep APIs and abstractions
simple for developers, and 2) how to address ad-hoc group formation. We have also identified other
potential solutions to configurable access control using encryption, notably attribute-based encryption,
which we hope to compare with this approach in the future.

• User-facing identity management will be an important part of NDN applications. NDN provides
the means to map application-level identities into collections of named certificates that are used for
signatures, but more work is required to regularize generation, signing, exchange, and revocation of
certificates so each application does not need to re-invent an approach. Some progress has been made
in the NDNFit and EBAMS applications, which borrow mechanisms originally created for the NDN
testbed’s routing certificate management.

• Our sample applications, such as ndn-rtc, are evolving to the point that certain aspects can be gen-
eralized. We have found that it is challenging to balance what has been learned from TCP/IP with
a desire to not blindly adopt its abstractions where they do not fit. One specific example is in con-
gestion control. The architecture can provide in-network support for congestion control by leveraging
forwarder state, strategy, and packet naming, but requires new designs to support multi-path scenarios
in a caching network, rather than direct adoption of techniques from the current internet.

References

[1] Cryptography.io library. https://cryptography.io/en/latest/.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer
Networks, 54(15):2787–2805, 2010.

[3] Deborah Estrin and Ida Sim. Open mhealth architecture: an engine for health care innovation. Science,
330(6005):759–760, 2010.

[4] C. Fan, S. Shannigrahi, S. DiBenedetto, C. Olschanowsky, C. Papadopoulos, and H. Newman. Managing
scientific data with named data networking. In Proceedings of the Fifth International Workshop on
Network-Aware Data Management. ACM, November 2015.

[5] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid—the new and improved power
grid: A survey. IEEE Communications Surveys & Tutorials, 14(4), 2011.

[6] Peter Gusev, Zhehao Wang, Jeff Burke, Lixia Zhang, Eiichi Muramoto, Ryota Ohnishi, and Takahiro
Yoneda. Real-time streaming data delivery over Named Data Networking (invited paper). IEICE
Transactions, May 2016.

[7] Jongdeog Lee, Akash Kapoor, Md Tanvir Al Amin, Zeyuan Zhang, Radhika Goyal, Zhehao Wang, Ilya
Moiseenko, and Tarek Abdelzaher. InfoMax: A Transport Layer Paradigm for the Age of Data Overload.
In Advances in Computer Communications and Networks - from green, mobile, pervasive networking to
big data computing (Web of Science Book Citation Index (BkCI)). River Publisher, July 2016.

[8] C. Olschanowsky, S. Shannigrahi, and C. Papadopoulos. Supporting climate research using named data
networking. In Local Metropolitan Area Networks (LANMAN), 2014 IEEE 20th International Workshop
on, pages 1–6, May 2014.

[9] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang, Yingdi Yu, Alexander Afanasyev, Jeff
Thompson, Jeff Burke, Beichuan Zhang, and Lixia Zhang. Named Data Networking of things. In
Proceedings of 1st IEEE International Conference on Internet-of-Things Design and Implementation
(IoTDI’2016), April 2016. (Invited paper).

17

https://cryptography.io/en/latest/

[10] S. Shannigrahi, C. Fan, and C. Papadopoulos. Improving large scientific data transfers using ndn
strategies. In ICN 2016. ACM, May. under submission.

[11] S. Shannigrahi, C. Papadopoulos, E. Yeh, H. Newman, A.J. Barczyk, R. Liu, A. Sim, A. Mughal,
I. Monga, J.R. Vlimant, and J. Wu. Named Data Networking in Climate Research and HEP Applica-
tions. Physics: Conference Series, 664(5), 2015.

[12] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian Tschudin. An information centric
network for computing the distribution of computations. ICN, 2014.

[13] Zhehao Wang, Jiayi Meng, and Jeff Burke. Hierarchical storage for NDN building management system.
2nd NDN Community Meeting (NDNcomm), September 2015.

[14] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia Zhang. Schematizing
Trust in Named Data Networking. In Proceedings of the 2nd International Conference on Information-
Centric Networking, September 2015.

[15] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. Name-based access control. Technical Report
NDN-0034, Revision 2, NDN, January 2016.

18

Chapter 3

Security

The NDN architecture per se has built-in features (e.g., per packet signature) to enable data-centric au-
thenticity, and rely on content encryption to achieve data-centric confidentiality. Driven by the two network
environments (NDNFit and EBAMS), which may deliver sensitive data over the network, we developed a
data-centric confidentiality solution, called Name-based Access Control [5]. Unlike traditional channel-based
confidentiality solutions, which only secure data in motion, our approach also retains confidentiality of data
at rest, which better facilitates data distribution systems.

We also investigated approaches to support the authenticity of long-lived data, i.e., packets whose digital
signature may have expired at the time of data consumption. Traditional authentication models require
signatures to be valid at the time of consumption, which require periodic re-signing to support long-term
archival data. We proposed a look back authentication model, in which consumers check the validity of a
signature at the time of production. We designed DeLorean [6] – a system that implements this model using
a secure timestamp service that allows consumers to roll back their clocks and authenticate data in the
context of its production.

Finally, we designed, implemented and evaluated a content poisoning system for NDN.

3.1 Name-based Access Control

The basic idea of data-centric confidentiality is: a producer encrypts the content in a data packet at the
time of production so that only authorized consumers can decrypt the content. Data-centric confidentiality
models offer two advantages over channel-based confidentiality: data remains confidential both in motion
and in rest; and access control comes automatically via the packet signatures.

A common approach to content confidentiality between two users is to encrypt content using each au-
thorized user’s public key directly, but it typically leads to multiple encrypted copies of the same content,
and any required packet segmentation (fragmentation) introduces additional storage overhead and reduces
the efficiency of content delivery. Moreover, this approach assumes that a producer has complete knowledge
about the access control policy of the produced data, which may not be true in some cases, e.g., distributed
data production.

We approach the problem by encrypting content using a symmetric content key (C-KEY in Figure 3.1) and
distributing the content key to authorized consumers, thus resulting in only one encrypted copy of content
but multiple encrypted copies of keys. Content keys represent the minimal access control granularity. As a
result, we convert the problem of data-centric confidentiality into a problem of content key distribution.

In order to facilitate content key distribution and enforce fine-grained access control, we designed a key
distribution protocol called Name-based Access Control (NAC) (Figure 3.1). To facilitate distributed data
production, NAC also separates the role of namespace owner from data producer. In NAC, the owner
of a namespace can publish the namespace’s access control policy in terms of named public keys and en-
crypted private keys, which we call namespace key (E-KEY and D-KEY in Figure 3.1). The encryption

19

namespace
encryption key

(E-KEY)

data

content key
(C-KEY)

encrypts

encrypts decrypts

decrypts

Producer operation Consumer operation

consumer public key consumer private key

D-KEY
decrypts

Data owner operation

encryptsnamespace
decryption key

(D-KEY)

Figure 3.1: Overview of Name-based Access Control. Producers produce data in an encrypted format
(encrypted using a content key which is also created by the producer). Producers retrieve namespace
encryption keys (published by data owners or namespace owners) to encrypt content keys and publish
the encrypted content key as a separate data packet. Data owners (or namespace owners) publish the
corresponding namespace decryption key as the third encrypted data packet, which is encrypted using an
authorized consumer’s public key. An authorized consumer can retrieve the three encrypted data packets
and recursively decrypt the keys and the original data.

key name (E-KEY in Figure 3.2) specifies the access namespace under which content keys should be en-
crypted using the encryption key. The encryption key name also includes additional requirements (e.g.,
time intervals) to further restrict the access granularity of the encryption key. Using the names listed in
Figure 3.2 as an example, a medical monitoring device is producing heart rate data every minute under
the namespace “/alice/health/data/medical/pulse”. The producer (i.e., the monitor device) creates a
content key (e.g., “/alice/health/data/medical/pulse/2016/05/02/18/C-KEY”) to encrypt all the data
produced within one hour. Each content key is named after its corresponding hour. A producer also re-
trieves the namespace key whose access namespace is a prefix of the content key encryption namespace, e.g.,
“/alice/health/read/medical/pulse/E-KEY/20160502/20160503”. The producer checks the additional
requirements from the name of the namespace key(e.g., time interval) to determine whether a content key
falls into the scope of the retrieved namespace key and encrypt the content key only if it is covered by the
namespace key.

/alice/health/data/medical/pulse/2016/05/02/18/C-KEY/

/alice/health/data/medical/pulse/2016/05/02/18/30Data name:

C-Key name:

/alice/health/read/medical/pulse/E-KEY/20160502/20160503
/alice/health/read/medical/pulse/D-KEY/20160502/20160503

data owner
prefix

access
namespace

additional
requirements

E-Key name:
D-Key name:

c-key encryption namespacedata owner
prefix

Figure 3.2: Encryption key naming convention in NAC. The name of content key (C-KEY) implies that all
the data under the content key namespace is encrypted by the content key. The name of namespace key
(E-KEY and C-KEY) determines which content key should be encrypted using the namespace key, i.e., the
access namespace in E-KEY name must be a prefix of the content key encryption namespace.

20

The namespace owner encrypts the corresponding decryption key (D-KEY) using the public keys of
authorized consumers and publishes the encrypted decryption keys also as data packets (the packet with
green lock in Figure 3.1). In NAC, we defined naming convention for encrypted data and name content,
content key and namespace decryption key using the same naming convention (Figure 3.3). More specifically,
any encrypted data name is a concatenation of the plain text data name, a special name component “FOR”,
and the encrypting key name. Following the encrypted data naming convention, authorized consumers can
retrieve data and keys and construct a key chain to decrypt the original data. For example, Alice may grant
Bob the access to heart rate data by encrypting the corresponding D-KEY using bob’s public key and name
the encrypted D-KEY as the last one in Figure 3.3

/alice/health/data/medical/pulse/2016/05/02/18/C-KEY/FOR/medical/pulse/E-KEY/20160502/20160503

/alice/health/data/medical/pulse/2016/05/02/18/30/FOR/medical/pulse/2016/05/02/18/C-KEY/Encrypted Data name:

Encrypted C-Key name:

/alice/health/read/medical/pulse/D-KEY/20160502/20160503/FOR/bob/encryption/KEY

data owner
prefix user key nameD-KEY name

Encrypted D-Key name:

C-KEY name

data owner
prefix

data owner
prefix

data name C-KEY name

E-KEY name

Figure 3.3: Encryption key naming convention in NAC. The first name refers to data encrypted using a
content key (the packet with black lock in Figure 3.1). The second name refers to a content key encrypted
using a namespace key (the packet with orange lock in Figure 3.1). The last one refers to a namespace
decryption key encrypted using an authorized consumer public key (the packet with green lock in Figure 3.1).

3.2 NDN DeLorean

NDN enables data-centric authenticity by mandating per-packet digital signature. Unlike physical signa-
tures, digital signatures however may not be considered trustworthy over prolonged time periods: given
enough computation power and time, it is possible to reconstruct the corresponding private key and issue
impersonated signatures. In addition, since each created signature is indeed an encrypted data digest using
a private key, keep using the same private key may render the key vulnerable to known plaintext attack.
Moreover there is also a chance that the keys get accidentally or maliciously leaked to adversaries. As a
result, current practices recommend the use of relatively short-lived signatures/certificates (from several
months to a couple of years) [2]. This limited lifetime span works well for channel-based security model since
communication channels have a limited duration, but not so well for NDN’s data-centric security model.
The lifetime of an NDN data packet can outlive the lifetime of its signature, especially in cases of historical
data archives.

We proposed an authentication system for NDN data archives, NDN DeLorean, which uses a look back
data authentication model: the data authentication process first rolls the clock back to the time of the
data’s creation. In order to allow consumers to securely rollback the reference time for data authentication,
we designed a publicly auditable timestamp service that issues proofs of data creation times by logging the
fingerprints of archived data in the form of Merkle tree. Given a data packet, the certificates that authenticate
its signature (certification chain), and the proof of the creation time (i.e., the fingerprints created by the
timestamp service) of data and certificates, one can always authenticate the data, regardless of the signature
expiration and even the fact that the private key may have become public.

DeLorean is an always-on service that publishes a data chronicle (Figure 3.4). The chronicle consists
of a sequence of volumes, each containing fingerprints of the witnessed data packets, such as specific USA
Today articles, within a fixed time slot, e.g., 10 minutes. The existence of a data packet (its fingerprint) in

21

…

Data Packets for
the Volume

Per-Timestamp
Volumes

2015-10-22
10:40am

2015-10-22
10:50am

2016-05-10
3:30pm

…

Figure 3.4: DeLorean Chronicle

a particular volume is a timestamp proof that the data packet existed before the end of the corresponding
time slot. The DeLorean system finalizes each volume at the end of each time slot and publishes it as a set
of data packets. The finalized volume cannot be changed without invalidating consistency with any future
volumes.

DeLorean

Producer
(USA Today publisher)

Consumer
(USA Today readers)

P.3. Publish data
& proof

P.
1.

 R
eq

ue
st

pr

oo
f

C.1. Retrieve data
& proofs

Chronicle
Storage

D. Publish
chronicle volumes

Auditor

A. Consistency
checking

P.2
. R

etrie
ve proof

Data
Storage

C.2. Verify proof

Figure 3.5: DeLorean Workflow.

At any time, a data producer (article’s author) or an archive service on the producers behalf (USA
Today publisher) can request a timestamp proof for data (articles) from DeLorean (Flow P.1 in Figure 3.5),
supplying a fingerprint of the archived data in form of a hash digest of an individual data packet or a digest
of the manifest that represents a data collection. The response to this request is a name of the chronicle
volume that DeLorean will publish at the end of the current cycle (Flow D) and the index of the fingerprint
in the volume. After waiting until the volume is ready (on average a 5 minute wait in our example), the
producer can retrieve the volume to verify whether DeLorean has included the data fingerprint in the volume
(Flow P.2). In the end, the producer can publish the timestamp proof, which includes the full name of the
volume and the index of data fingerprint, alongside the data (Flows P.3).

To verify data independently of its signature validity, consumers need to look back to the time point when
data was produced (or time stamped). A consumer first obtains the corresponding timestamp proof, which
can be stored alongside the data (Flow C.1), and verifies the data’s existence by retrieving several additional
DeLorean volumes. Similarly, the consumer verifies the existence of the data’s signing key certificates.4 With
all certificates proving their existences, the consumer can verify the data signature as if it were the time of
the data’s production.

In order to ensure the correct and truthful operations of DeLorean, a set of third-party auditors contin-
uously check the consistency of the chronicle (Flow A), i.e., checking that DeLorean has not modified the
previously published volumes. If auditors detect that DeLorean has modified the chronicle, the users of the
service (auditors, data producers, and consumers) will take immediate actions to either fix the issue or aban-

22

don the specific instance of DeLorean service. In order to guarantee consistency, at least one auditor must
retrieve each DeLorean volume around the time it is published. The more auditors in the process, the less
frequently each individual auditor needs to perform consistency checking. Note that although consumer and
producer roles are separate from the auditor role in Figure 3.5, they can be (and, from security perspective,
should be) combined.

3.3 Content Poisoning Mitigation

Content poisoning attacks are a significant problem in Information Centric Netw orks ICN), such as Named
Data Networking. In a content poisoning attack, an attacker injects bogus content into the network with a
legitimate name. While users will reject the content because of signature mismatch, the network is largely
unaware of the problem due to the computational burden of on-the-fly packet verifi cation. Thus, subsequent
requests may trigger the return of bogus content, constituting a denial of service attack. While NDN could
resist poisoned content by restricting prefix advertisement, the latter interferes with the “content from
anywhere” principle, which we consider to be a great advantage of NDN. We investigated NDN content
poisoning and surveyed the state-of-the-art in mitigation mechanisms. We developed a novel system for
detecting, reporting, and avoiding poisoned content that leverages the verification work that users must
do anyway. We evaluated two evasion strategies, Immediate Failover and Probe First, that capture the
spectrum of possible solutions to avoiding bad content. Our conceptualization of content poisoning in NDN
as essentially a forwarding problem enables NDN-based mitigation mechanisms via the use of adaptive
forwarding strategies [3].

3.4 Plan For Next Year

We hope to complete three tasks in the next year: 1) automation of certificate management, 2) automation of
data signing and verification based on schematized trust, and 3) applying name-based access control design
to NP environments, specifically NDNfit and EBAMS (Enterprise Building Automation & Management).

For task (1), our plan is to adapt ACME, the Automatic Certificate Management Engine[2] protocol
designed for Lets Encrypt, for NDN certificate issuance. ACME will replace the old manually managed
NDN certificate system. Compared to the existing system, NDN-ACME will be able to support multiple
certificate hierarchies, instead of supporting only the NDN testbed certificate hierarchy. The new system
will enable multiple validation approaches, such as email, shared secrets, and DNS, instead of email being
the only one validation mechanism. Moreover, the new system will provide automated certificate renewal
and key rollover, which are sorely missing now, as well as the use of short-lived keys, which will reduce the
need for key revocation.

Task (2) has three sub-tasks. First, we plan to overcome extend the current trust schema syntax [4] in
order to allow users to describe more application semantics in trust schema, such as userId or timestamp,
as well as supporting user-defined syntax in the new trust schema format. Second, we plan to remove the
current limitation of having users manually write trust rules for a trust model, which is prone to errors.
We will build a GUI tool that enables users to easily express the trust model in a graphical form, and
that automatically converts the graph into trust schema. The tool will also provide a verification interface,
through which users can supply test cases in terms of data name and key name pair. The tool can output
the result of compliance checking for user to verify the correctness of the trust rule expression. The tool may
also accept a single data name as verification input and output all the possible signing key namespace as an
alternative correctness verification. Finally, we plan to integrate signing part of trust schema with the new
NDN certificate system mentioned above. In the current implementation, if there are no available signing
keys, the library will refuse to sign data. By integrating trust schema with the certificate system, the library
can automatically generate missing keys and request certificates using the new ndncert [1].

Task (3) is to turn the Name-based Access Control (NAC) into functioning code, integrate it into the
NDNfit and EBAMS applications, discover potential issues in order to and further improve its design and
implementation.

23

Task (4) is to complete communication confidentiality support in NDN based on NAC, which provides
content confidentiality. Data names carrying application semantics may also reveal sensitive information
and may cause privacy issues in some cases. We discussed the privacy issues of NDN during the March 2016
NDN retreat, and agreed to explore two communication scenarios: point-to-point ephemeral communication
and data distribution. Our initial plan is to provide a DTLS equivalent solution for the point to point
ephemeral communication and provide an anonymizing proxy based solution to maximize the efficiency of
data distribution with data name obfuscation.

References

[1] Alexander Afanasyev. NDNCERT: User public key certification system for NDN Testbed. 1st NDN
Community Meeting (NDNcomm), September 2014. http://www.caida.org/workshops/ndn/1409/.

[2] Richard Barnes, Peter Eckersley, Seth Schoen, J. Alex Halderman, and James Kasten. Automatic Certifi-
cate Management Environment (ACME). https://github.com/letsencrypt/acme-spec, September
2014.

[3] S. DiBenedetto and C. Papadopoulos. Mitigating poisoned content with forwarding strategy. In The
third Workshop on Name-Oriented Mobility: Architecture, Alg orithms and Applications (NOM), April
2016.

[4] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia Zhang. Schematizing
Trust in Named Data Networking. In Proceedings of the 2nd International Conference on Information-
Centric Networking, September 2015.

[5] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. Name-based access control. Technical Report NDN-
0034, Revision 2, NDN, January 2016.

[6] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. NDN DeLorean: An Authentication System for Data
Archives in Named Data Networking. Technical Report NDN-0040, NDN, May 2016.

24

http://www.caida.org/workshops/ndn/1409/
https://github.com/letsencrypt/acme-spec

Chapter 4

Distributed Dataset Synchronization

Early in the NDN project, we identified a common need by all distributed applications: synchronization of
shared dataset, or Sync (See [4], Section 2). A list of names (or name space) represents a dataset, that may
be shared among distributed parties. While various applications differ in their goals and communication
patterns, the need to synchronize the data represented by a collection of names or namespaces is identical.
We have come to consider Sync a fundamental NDN communication primitive. Since distributed applications
are a generalization of 2-party communications, we can view sync as a generalization of end-to-end reliable
data delivery. However Sync differs from the existing end-to-end reliable transport protocols, such as TCP, in
two fundamental ways. First, Sync reliably synchronizes application named datasets among multiple parties,
while a TCP connection delivers byte streams identified by its two endpoints. Second, a TCP connection
delivers byte streams between two specific endpoints synchronously (i.e. both must be online at the same
time), while NDN’s Sync can fetch data packets from anywhere it can find the matching data items, either
in real time or asynchronously. The ability to reconcile set differences asynchronously is especially useful in
constrained environments with ad hoc and intermittent connectivity.

Over the last few years we have explored various different approaches to Sync support. We initially
developed ChronoSync to support a Multi-User Chat application [9]; ChronoSync has since evolved to a
general library utility used by other NDN applications including NLSR [5], ChronoShare [1], and scientific
data management applications [6, 2]. Another approach, iSync, differs from ChronoSync in that it utilizes an
Invertible Bloom filter (IBF) to reconcile data collections between nodes [7]. Our progress during this report-
ing period includes a) development of Round-Sync, an improvement over ChronoSync, and b) PartialSync [8]
which allows individual consumers to synchronize a subset of the dataset with the producer.

In the rest of this chapter we first give a brief summary of ChronoSync and iSync to illustrate their
different design approaches, followed by a description of Round-Sync (which is based on ChronoSync) and
PartialSync (which adopted certain design choices from both ChronoSync and iSync). We then summarize
our current understanding of the Sync design space, and discuss our ongoing effort and plan for the coming
year in the Sync area.

4.1 Chronosync and iSync

The Chronosync design exploits naming rules to ease dataset synchronization. It assumes that each
participant in a distributed application names its produced data sequentially. Therefore Chronosync only
needs to keep track of the latest sequence number of each participant, and the latest state of the dataset can
then be represented by the cryptographic digest over everyone’s identifier plus sequence number.

Chronosync participants interact with each other using two types of Interest-Data exchanges: synchro-
nization (sync) and application data. A sync interest carries the name of the application instance plus
the cryptographic digest that represents the sender’s knowledge of the current dataset which ChronoSync
will deliver to all other participants. For example, a sync interest for Chronochat application instance
looks like /ndn/chronchat/lunch-talk/a1324asd9, where /chronchat/lunch-talk/ names the application in-

25

stance, and a1324asd9 is the digest. ChronoSync will deliver this interest to all participants who announce
/ndn/chronchat/lunch-talk/ prefix.1 This sync interest serves two purposes: it checks to see whether anyone
else holds a different digest, and if so, it tries to resolve the difference; it also checks to see whether anyone
has produced new data since the state represented by the digest. To be able to tell whether a received
sync interest represents the latest sync state, each participant maintains the history of its observed dataset
changes in form of digest logs.

Any recipient of a sync Interest Si who has newer information can respond with a data packet that
includes one or more pieces new data (in the form of [producer name, sequence number] pairs) missed by
the sender of Si. Once a participant learns of changes to the dataset, it can decide whether and when to
retrieve the missing data from its producers. However when two or more nodes produce data at the same
time, they will all respond to Si, but the sender of Si can receive only one node’s data, and has to invoke
a recovery mechanism to retrieve the rest. ChronoSync also has sync recovery mechanisms that enables all
participants to reach a common state after the network heals from a partition.

The iSync protocol utilizes the invertible Bloom filter (IBF) to reconcile sync collections between
participants [3]. IBF is a hash-indexed, redundant table and supports item insertion, deletion, and limited
inversion (i.e., extraction of stored items). Moreover, one can obtain a difference set between two IBFs by
subtracting their IBF entries. iSync uses this unique subtraction operation to discover multiple differences in
a single subtraction, which leads to an efficient implementation with a low computation and communication
overhead. iSync consists of a repository and a sync agent. When the repository adds a new item to the
collection, it notifies the sync agent which in turn indexes the inserted content name and updates a digest
that reflects all names in the collection. The sync agent notifies other participants of its local digests by
periodically broadcasting the digest (equivalent to sync interest in Chronosync), while receiving remote
digests. When a remote collection digest does not match the local one, a reconciliation process starts, which
involves repeatedly requesting, receiving, and comparing remote IBF against the local IBF.

iSync uses a hierarchical two-level IBF: Repository IBF and collection IBFs. The former records the status
of the entire repository, while the latter logs insertions and deletions of each sync collection separately. An
update to a collection changes the collection’s IBF in only one second level digest, by adding the hash of the
new data name into the corresponding collection IBF, which then invokes an update to the repository IBF
and digest. We (Washington U.) designed and implemented the iSync protocol [7], and evaluated iSyncs
performance by comparing it to the CCNx synchronization protocol. Experiments show that iSync is about
eight times faster across a range of network topologies and sizes, and that it reduces synchronization traffic
by about 90%.

Comparing Chronosync and iSync reveals two basic differences. First, with its use of an IBF,
iSync can discover multiple changes to the dataset through one sync exchange, while Chronosync may need
to iterate through all changes, especially with multiple simultaneous producers. Second, and related, the
storage and computation cost of IBF is nontrivial. iSync makes no assumption about data names, and its
volume of name collections grows over time, and so does the IBF data structure overhead. For example,
each iSync repo node may need to create multiple IBFs in a sync period if the number of updates since the
previous sync interest has exceeded the capacity of the IBF; other repos need to retrieve and process all
those IBFs in order to discover all the updates in the last sync period.

Currently, both Chronosync and iSync must deliver sync interests to all participants in a distributed
application, highlighting the need for more scalable solutions, still an open research topic.

4.2 Round-Sync

ChronoSync uses a Sync interest for two purposes: a) to check to see whether anyone else holds a different
digest; and b) to check to see whether anyone has produced new data since the state represented by the
digest. This double-meaning of Sync interests leads to certain performance limitations of ChronoSync.
First, each node must resolve any differences before producing new data, otherwise additional new data

1An alternative to letting participants make routing announcements is to use broadcast, i.e. sending sync interest using the
name /ndn/broadcast/chronchat/lunch-talk/a1324asd9, which is the current default implementation. A scalable and
efficient solution for delivering sync interests remains an active research effort.

26

would make reconciliation more difficult. Second, if multiple nodes produce new data simultaneously, they
cannot recognize the digest in the Sync interests generated by others, thus they must reconcile first before
producing any new data. Besides delaying the new data propagation, reconciliation itself also carries a cost.

Round-Sync aims to reduce the invocation of state reconciliation by decoupling the function of detecting
out-of-synchronization from fetching new data. Round-Sync divides data generation into rounds, that are
identified by monotonically increasing numbers. When a node A produces a piece of data at round n, it
immediately increases the round number to n + 1 and sends a Data interest to solicit data for round n + 1.
This reduces, although does not eliminate, the chance of multiple nodes producing new data in the same
round.

Each round n has a digest Gn which is a cryptographic hash of all data names produced at round
n. The dataset also has a cumulative digest GN which is the hash of all the round digests up to round
n. Round-Sync uses two different types of interests, one for data fetching (Data interests), and one for
detecting out-of-synchronization state in a round (Sync Interests). These mechanisms enable Round-Sync to
synchronize data production for each round separately. When a node A produces a piece of data at round n,
it increases the round number to n + 1 and sends a Data interest to solicit data for round n + 1. If another
node B also produces data at round n before it receives A’s data, B will have a different round digest than
A’s. While A and B resolve their differences, node C may produce data at round n + 1 which does not
interfere with A and B’s reconciliation.

In summary, by cutting data production into different rounds and decoupling the detection of out-of-
synchronization from fetching new data, Round-Sync reduces the chance of data production collision (one
sync interest solicited multiple pieces of data produced by multiple nodes) and allows data production in
parallel with dataset synchronization. At the time of this writing we are evaluating the performance of
Round-Sync as compared to ChronoSync through simulation, hoping to achieve quantitative results soon.

4.3 PartialSync

PartialSync protocol [8] is designed to efficiently synchronize datasets between consumers and producers,
where individual consumers may be interested in only a subset of the whole data collection, and may
synchronize with any producer sharing the same dataset, assuming that a) all producers keep synchronized
with each others, say through either ChronoSync or iSync, and b) they can be reached by using the same
routable name prefixes.

PartialSync uses regular Bloom Filters (BF) to let consumers express their subscriptions (Subscription
List), and uses Invertible Bloom Filter (IBF) to represent a producer’s latest dataset (Producer State). A
consumer keeps the producer’s IBF and queries for an update periodically by attaching both its BF and the
producer’s previous IBF to each query, expressed as a PartialSync interest. By comparing the differences
between the previous IBF carried in the query and its current IBF, the producer can generate a list of names
corresponding to the new data that has been produced in the period between the previous and new IBFs.
Using the subscription list carried in the query, the producer can notify the consumer of all changes in the
subset to which the consumer has subscribed.

To address the scalability issue with the number of names encoded in an IBF, PartialSync adopts
ChronoSync’s approach of letting each producer name data sequentially. Therefore the latest dataset can be
represented by an IBF which contains only one data item from each producer, which is the producer’s name
plus its latest sequence number. When a producer P generates a new data item and increases its sequence
number from N to N + 1, PartialSync will remove the item [P , N] from the IBF and add [P , N + 1] to the
IBF. In doing so, the IBF contains only M items, where M is the number of producers.

Upon its start, a consumer first sends a PartialSync Interest to the Sync prefix, the interest includes
a Subscription List BF and an empty IBF. This interest may reach any of the producers. The producer
sends back a PartialSync Reply which includes its latest IBF, as well as the latest names, in the form of
[producer, seq#], of all the data streams as part of the content of the message. The consumer can then
retrieve the latest data in its subscription list accordingly. In its subsequent queries, the consumer includes
in its PartialSync interest the subscription BF and the last IBF it obtained from the producer. Whenever

27

the producer receives a PartialSync Interest from the consumer, it first parses the BF and the IBF in the
consumer’s PartialSync Interest. If the IBF from the consumer and its own IBF are the same, the producer
waits until new data arrives that matches the consumer’s subscription list. Otherwise, if they are different,
the producer checks whether there are any updates to data to which the consumer is subscribed. In both
cases, the producer sends a PartialSync Reply which contains a list of updated data names.

When a consumer receives a PartialSync Reply, the consumer first checks whether each received data
name is in the subscription list; due to the false positive property of BFs, the producer may occasionally
send data names not on the consumer’s subscription list. For each subscribed data name, it then checks
whether the sequence number is newer than its own version, and if so, the consumer sends an Interest to
fetch the newer data. The consumer will send another PartialSync Interest to the producer, either upon
receiving a PartialSync Reply or upon the timeout of the previous PartialSync interest, which includes the
received IBF.

In summary, PartialSync supports scalable and efficient subscription service through the following means.
1) Like ChronoSync, it uses naming conventions to keep data items in the IBF constant. 2) Like iSync, it
makes use of an IBF to easily detect multiple updates in one sync step. 3) It uses BF to express subscriptions,
so that producers only inform a consumer about updates to data of interest to the consumer. 4) It carries
the consumer state in a PartialSync interest, which frees the producers from keeping consumer state and
allows consumers to sync with any producer (assuming producers keep sync’ed with each other). In contrast
to ChronoSync and iSync, whose sync interests are multicast to all participants, PartialSync interests are
anycast to any one of the producers.

4.4 Summary and Plan for Next Year

Data synchronization is an important communication mechanism for distributed applications over NDN. Ex-
isting Sync protocols make different design tradeoffs in how they achieve dataset reconciliation: ChronoSync
and RoundSync leverage the naming convention of using sequence numbers in data names to allow efficient
encoding of the synchronized namespace as a list of [producer name, latest sequence number] pairs; iSync
supports arbitrary namespace structure at the cost of higher storage and processing overhead associated with
IBF. PartialSync can be applied in distributed applications to support synchronization between consumers
and multiple producers, but requires producers to synchronize using ChronoSync or iSync.

Our plans for the next year include: 1) continuing to explore efficient dataset reconciliation mechanisms
that can improve the existing Sync protocols, 2) evaluating the communication cost of multicasting sync
interests to all participants and designing more scalable and efficient solutions for delivering sync interests,
3) improving the application interface and library support for the Sync protocols by providing more powerful
and developer-friendly abstractions over the core Sync functionality, and 4) developing new distributed
applications over the Sync protocols and evaluate their correctness, efficiency, and usability.

References

[1] Alexander Afanasyev, Zhenkai Zhu, Yingdi Yu, Lijing Wang, and Lixia Zhang. The Story of ChronoShare,
or How NDN Brought Distributed Secure File Sharing Back. In Proceedings of IEEE MASS 2015 Work-
shop on Content-Centric Networks, October 2015.

[2] Chengyu Fan, Susmit Shannigrahi, Steve DiBenedetto, Catherine Olschanowsky, Christos Papadopoulos,
and Harvey Newman. Managing scientific data with Named Data Networking. In Proceedings of the Fifth
International Workshop on Network-Aware Data Management, November 2015.

[3] Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In In 49th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), 2011.

[4] Van Jacobson, Jeffrey Burke, Lixia Zhang, Beichuan Zhang, kc claffy, Dima Krioukov, Chris-
tos Papadopoulos, Tarek Abdelzaher, Lan Wang, Edmund Yeh, and Patrick Crowley. Named

28

Data Networking (NDN) Project 2010 - 2011 Report, 2011. http://named-data.net/project/

annual-progress-summaries/project/ndn-ar2011-html/.

[5] Vince Lehman, A K M Mahmudul Hoque, Yingdi Yu, Lan Wang, Beichuan Zhang, and Lixia Zhang. A
secure link state routing protocol for NDN. Technical Report NDN-0037, NDN Project, January 2016.

[6] C. Olschanowsky, S. Shannigrahi, and C. Papadopoulos. Supporting climate research using named data
networking. In Local Metropolitan Area Networks (LANMAN), 2014 IEEE 20th International Workshop
on, pages 1–6, May 2014.

[7] Fu Wenliang, Hila Ben Abraham, and Patrick Crowley. Synchronizing namespaces with invertible bloom
filters. In To appear in ANCS 2015, 2015.

[8] Minsheng Zhang, Vince Lehman, and Lan Wang. PartialSync: Efficient Synchronization of a Partial
Namespace in NDN. Technical Report NDN-0039, NDN, June 2016.

[9] Zhenkai Zhu and Alexander Afanasyev. Let’s ChronoSync: Decentralized dataset state synchronization
in Named Data Networking. In IEEE ICNP, 2013.

29

http://named-data.net/project/annual-progress-summaries/project/ndn-ar2011-html/
http://named-data.net/project/annual-progress-summaries/project/ndn-ar2011-html/

Chapter 5

Networking

Contributors
PIs Beichuan Zhang (Arizona), Van Jacobson & Lixia Zhang (UCLA), Lan Wang (Mem-

phis), Christos Papadopoulos (Colorado State University), Patrick Crowley (Washington

University)

Grad Students . . Junxiao Shi, Teng Liang, Weiwei Liu, Klaus Schneider (Arizona); Spyridon Mastorakis,

Ilya Moiseenko, Wentao Shang, Yingdi Yu (UCLA), Muktadir R. Chowdhury, Minsheng

Zhang (U. Memphis), Steve DiBenedetto, Chengyu Fan (Colorado State), Haowei Yuan,

Hila Ben Abraham (Washington University)

Undergrads Ashlesh Gawande, Benjamin Murphy (U. Memphis), Eric Newberry (Arizona)

Staff Vince S. Lehman (Memphis), John DeHart, Jyoti Parwatikar (Washington University)

Research Scientist: Alex Afanasyev (UCLA)

In the past year, we continued our research to develop the underlying network layer of the NDN architec-
ture, with an emphasis on how to best meet the needs of the target network environments. More specifically,
we made significant progress in the areas of network protocols and software, routing protocols, forwarding
strategy, and scalable forwarding.

5.1 NDN Forwarding Daemon (NFD)

Since May 2015, we made one major and four minor releases of NDN Forwarding Daemon (NFD), evolving it
from v0.3.1 to v0.4.1 as of this report. Over the year, we have designed and implemented a network adaptation
layer NDNLPv2, simplified configuration tasks in environments with one or more remote NDN forwarders
acting as NDN gateways, improved management protocols, as well as ported NFD to the Android platform.
NFD now runs on Linux, FreeBSD, Mac OSX, Android, DD-WRT/OpenWRT (home routers), Raspberry
Pi, and a couple of other embedded platforms, as well as in virtualized environments. The development
of NFD continues to use an open source and distributed model, involving the broader community. We
use Redmine for issue tracking, Gerrit for code review, and Jenkins for automatic build and continuous
integration. NFD has over 30 contributors from 10 different institutions, as well as several contributions
outside the NSF-funded NDN team. To coordinate NFD development, we use the NFD developer mailing
list with more than 100 members currently and conference calls twice weekly. We also continually update
the NFD Developer’s Guide and other related documents to provide implementation details and suggested
development practices for new developers and researchers.

30

5.1.1 NDN Link Protocol v2

To accommodate NDN communication to different underlying links, it may be necessary to include additional
information in the NDN interest and data packets. We designed and implemented a network adaptation
protocol, NDN Link Protocol v2 (NDNLPv2). With NDNLPv2, routers can: (1) fragment and reassemble
NDN packets that exceed a link’s maximum transmission unit (MTU); and (2) send feedback upstream
in form of network NACKs to signal failures of interest forwarding. Special NDN applications can use
NDNLPv2 to: (1) explicitly indicate which face to forward an interest; (2) obtain information about the
face that originally received a packet; and (3) request special cache behavior for the data packets. The latter
may be useful when an NDN application wants to cache data and not use a router’s cache. In the future,
we plan to further extend the network adaptation features.

In implementing NDNLPv2, we decided to refactor NFD’s Face system, specifically, we split the NDN Face
abstraction into Transport and LinkService components. Transport provides delivery of the data blocks over
specific underlying channels (raw ethernet packets, unicast/multicast UDP datagrams, TCP and WebSocket
streams). LinkService provides a “network adaptation” layer to translate between NDN packets and data
blocks communicated through the channels. The new Face abstraction serves as a container of Transport and
LinkService instances and provides a high-level interface to send/receive NDN packets. This new structure
makes it easy to combine different transports with different implementations of network adaptation.

5.1.2 NFD Management Protocol

reject

invalid

reject

dispatcher

manager

re
gi

st
er

C
om

m
an

dH
an

dl
er

re
gi

st
er

St
at

us
D

at
as

et
H

an
dl

er

re
gi

st
er

N
ot

ifi
ca

tio
nS

tre
am

N
ot

ifi
ca

tio
n

ControlCommandHandler

ParametersValidate

Authorzation

StatusDatasetHandler

Authorzation

fail

succeed

accept

valid

reject

append & end

ControlResponse Status Dataset / Response

In
te

re
st

D
at

a

Figure 5.1: Overview of the manager Interest / Data
exchange via the dispatcher

Our original design of NFD included several
management protocols, implemented using Inter-
est/Data exchanges. To obtain information about
the state of an NFD module (status datasets) or
change its state (control commands), one sends an
interest or signed interest for the data or for the
confirmation of the command specified in the inter-
est name. These include obtaining basic statistics
of NFD, a list of Faces, RIB, and FIB entries, cre-
ation, removal, and state modification of Faces, ma-
nipulating forwarding information base (FIB) and
routing information base (RIB) entries, as well as se-
lection of per-namespace interest forwarding strate-
gies. In addition, NFD management protocols in-
clude notification streams, a pub/sub-like protocol
based on interest/data exchange to get notifications
when specific NFD events happen. For example,
when a face is created or destroyed, an NFD module
(RIB manager) and other special applications (e.g.,
nfd-autoreg) will receive a corresponding notifica-
tion. NFD Management uses the name-based schematized trust model for command interest authentication
and authorization. In the future, we plan to include encryption of the status datasets using the name-based
access control mechanism.

The development model for the NFD management protocol is generic and applies to other applications.
For example, NLSR [6] and repo-ng1 implement management the same way. To simplify implementation of
new management protocols, we designed and implemented the management dispatcher abstraction. With
the dispatcher, the applications can easily implement a new management protocol by registering necessary
control commands, status datasets, and notification streams with the dispatcher. The dispatcher will classify
and authenticate incoming interests in a centralized and consistent way, allowing applications to focus on
command logic rather than implementation details.

1https://github.com/named-data/repo-ng

31

https://github.com/named-data/repo-ng

5.1.3 Automatic Prefix Propagation

In NDN, when a producer application wants to make its data available for retrieval, it registers the data’s
prefix with the NDN forwarder on the same host machine (i.e., local registration). Additional signaling is
needed to make data available for fetching by remote NDN forwarders. This can be achieved in one of the
following ways: manual configuration, dynamic name announcement protocols (e.g., NLSR), or opportunistic
data discovery strategies (e.g., the access strategy, and auto-registration of the specified prefix(es) upon
creation of on-demand faces). Different methods have different tradeoffs in ease of use, implementation
complexity, and communication overhead. We have designed and developed an Automatic Prefix Propagation
(APP) protocol to address the above issues.2

Gateway Router: A

Gateway Router: B

Host: a

Host: b

Host: c

Host: d

app1 app2

local registration
……

/A/c/app1 0

……

FIB

/A/c/app2 1

……
/A/c 2

……

FIB

Interest: /A/c/app2/data0

propagation

Figure 5.2: Make a producer application’s data avail-
able for fetching from remote NDN forwarders.

As shown in Figure 5.2, APP enables the local
NDN forwarder in Host d to automatically prop-
agate local prefix registrations to the remote for-
warder on Gatway Router B. Local prefix registra-
tion triggers such propagation when (1) an active
remote NDN gateway exists, as indicated by the
“/localhop/nfd” registered prefix in the local RIB,
and (2) the local forwarder possesses a private key
and the corresponding NDN certificate that matches
or covers the locally registered namespace. If there
are two or more candidates for the keys/namespace,
the key that corresponds to the shortest names-
pace is selected. This allows the forwarder to ag-
gregate multiple local registrations into one remote
action, reducing communication and bookkeeping
overheads.

After the initial prefix propagation, NFD peri-
odically refreshes the registration, unless the prefix
is no longer registered locally or there are no NDN
gateways configured. The protocol maintains a finite state automaton for each propagated entry, that not
only schedules propagation refreshment and handles failures with configured strategies, but also dynamically
deals with connectivity changes and other state transitions.

5.1.4 Supporting Mobility and FIB Scaling with LINK

In previous work we discussed a possibility of using a LINK object to control the number of entries in the
forwarding information base [1]. We can use the same mechanism to support mobile publishing, when it is
necessary to track down the moving producer and not just its data [14]. In this approach, data names map
to a set of globally routable names, which interests can include as “LINKS” to inform (hint) the forwarding
system of the whereabouts of the requested data.

Over the last year, we added support for LINK objects in all our libraries and in NFD. This support
included several components: (1) definition and implementation of the LINK abstraction as a data packet
containing a list of namespace-to-namespace mapping (delegations), (2) extension of the NDN interest packet
format to allow inclusion of a LINK object, and (3) extension of the interest processing logic in NFD
forwarding pipelines. As part of the changes in the forwarding pipelines, we have introduced a network
region table that contains a list of prefixes considered local to the producer. Whenever an interest with a
LINK object reaches the router, if one of the delegations specified in the LINK is a prefix for some entry in
the network regions table, the router processes the data name in the interest, otherwise, NFD uses LINK
delegations to decide how to forward the interest.

Our current implementation of the LINK support has several limitations that we plan to address in
the future. First, the network region table requires manual configuration of NFD instances running on

2The currently implementation of the protocol assumes a single NDN gateway; future versions will support multi-gateway
environments.

32

routers and end hosts, which we plan to address by extending the auto-configuration protocols. Second, our
implementation does not currently partition the content store for data with the same prefixes, retrieved using
different links. As we showed in a brief analysis [1], such partitioning would be necessary in real systems
to prevent denial-of-service attacks through targeted cache poisoning. In addition to that, we have not yet
fully utilized the implemented support in the developed applications, which could expose limitations of the
designed logic.

5.1.5 Permanent Faces

Initial deployment of our applications in the BMS environment highlighted a limitation of the implemented
Face system in NFD: the tunneled faces only exist while there is underlying network connectivity, and must
be re-created after connectivity changes. To handle this situation, we added support for permanent faces
(currently, only UDP-based faces) that persist throughout the lifetime of the NFD instance, along with any
associated RIB and FIB entries. We also plan to support Face and RIB/FIB entry permanency across NFD
restarts. All native faces (e.g., Ethernet faces associated with physical network interfaces) are permanent
by design. As long as an interface exists, there is a corresponding face. The limitation applies specifically
to tunneled faces, i.e., where it is infeasible or prohibitively expensive to enable native NDN support in the
transit networks, such as a campus WiFi network.

5.1.6 NFD on Android

Figure 5.3: User interfaces to NFD-Android

To allow broader experimentation with NDN tech-
nology, and in particular experimentation in real
mobile environments, we made a prototype port of
our reference forwarding daemon implementation on
Android platform (NFD-Android). The port is fully
based on and evolves with the original NFD source
code and in addition includes several user interfaces
to manually start/stop NFD service and get basic
operational statistics, create faces, and register pre-
fixes (Figure 5.3). The initial port can run on any
Android device, including any unrooted devices, and
can be either manually compiled from the publicly
available source code or be directly installed from
the Google Play store.

The initial NFD-Android port has a number of
usability limitations: it lacks auto-configuration ca-
pability, including after power cycling a device; se-
curity limitations prevent non-rooted Android platforms from communicating over raw Ethernet sockets; and
users must manually establish a direct WiFi session, discover peer IP addresses, and then configure proper
faces and routes toward the peer-to-peer faces.

Nevertheless, the NDN team with the help of students from UCLA’s CS217B class in Spring quarter of
2015 developed several pilot applications that demonstrate NDN advantages. These applications include:

• NDN Whiteboard (https://github.com/named-data-mobile/apps-NDN-Whiteboard): a real-time
shared whiteboard that works over Named Data Networking (NDN).

• PhotoSharing app (https://github.com/ohnonoho/photoSharing): a simple photo sharing applica-
tion that leverages sync and local sharing of data (the app manages Direct WiFi sessions)

• ndn-hangman (https://github.com/dchandc/ndn-hangman): a simple Hangman game that uses
Chronosync to synchronize state of the game in delay-tolerant fashion.

These pilot application design and development efforts allowed the students to deepen their understanding
of NDN through first hand experience, to appreciate NDN’s advantages in easing distributed application

33

https://github.com/named-data-mobile/apps-NDN-Whiteboard
https://github.com/ohnonoho/photoSharing
https://github.com/dchandc/ndn-hangman

Pre-signed Data Dynamically Generated Data

Time
Between
Interests
(ms)

Avg NFD
CPU %

Avg File
timeout
%

Throughput
(Mb/s)

Time
Between
Interests
(ms)

Avg NFD
CPU %

Avg File
timeout
%

Throughput
(Mb/s)

11 3.98% 0.29% 5.5 11 3.56% 0.33% 5.48

8 3.34% 0.31% 7.5 8 3.65% 25.9% 5.39

5 5.81% 0.34% 11.66 5 4.19% 94.7% 0.59

Table 5.1: 2.5 GHz Phone. Left: Serving pre-signed Data. Right: Serving dynamically generated Data

Pre-signed Data Dynamically Generated Data

Time
Between
Interests
(ms)

Avg NFD
CPU %

Avg File
timeout
%

Throughput
(Mb/s)

Time
Between
Interests
(ms)

Avg NFD
CPU %

Avg File
timeout
%

Throughput
(Mb/s)

11 2.31% 0.34% 5.53 37 2.24% 0.32% 1.67

8 2.85% 6.4% 6.94 34 2.23% 0.34% 1.81

5 3.11% 48.97% 5.74 31 1.97% 90.79% 0.18

Table 5.2: 1.2 GHz phone. Left: Serving pre-signed Data. Right: Serving dynamically generated Data

development, as well as allowed us to identify the following common issues that require emphasis with NDN
newcomers:

• How best to choose application data names, establish naming conventions, and make best use of
metadata, to simplify the overall design;

• How to use versioning to handle data changes (this reflects an inadequate understanding of immutable
data concept), and

• How best to work with in-network caches.

These efforts also identified a number of issues with using the NDN prototype code base beyond the
Android package; the most important ones are the lack of documentation and lack of sample code to ease
the steep learning curve. We have proposed to address these issues in the supplement period.

We tested the performance of NDN (including NFD, applications and libraries) on two Android devices
with different computational abilities. Our testing was centered around using an Android device as a pro-
ducer. For each test, the Android device would serve Data in one of two ways when it received an Interest:
either by loading pre-signed Data saved in the device’s storage, or by generating and signing Data on-demand
for each Interest. While the test was running, we ran a statistics collection application that gathered informa-
tion about the producer application’s CPU usage and NFD’s CPU usage. Each test consisted of a consumer
laptop expressing Interest for 100 MB worth of Data which was served from the Android device. These tests
were conducted with two phones: a Samsung phone with a 2.5 GHz quad-core CPU and a Motorola phone
with a 1.2 GHz quad-core CPU.

The results for the 2.5 GHz phone are shown in Table 5.1, and the results for the 1.2 GHz phone are shown
in Table 5.2. Our test results showed that both lesser and more powerful devices are able to serve pre-signed
Data with similar throughput when the request rate is lower. When Interests are sent every 11ms, both
the 1.2 GHz and 2.5 GHz phones serve pre-signed Data with around 5.5 Mb/s throughput. More powerful
devices also dynamically generate and sign Data at a rate not too far behind serving pre-signed Data; the 2.5
GHz phone serves both types of Data with around 5.5 Mb/s throughput when Interests are sent at an 11ms
interval. The 1.2 GHz phone requires much more computational time to dynamically generate and serve
Data than the 2.5 GHz phone, thus the Interest rate needed to be lowered in order to get results for the 1.2
GHz phone. Lowering the Interest rate on the 1.2 GHz phone with dynamically served Data caused lower
throughput than serving pre-signed Data (1.67 Mb/s vs. 5.53 Mb/s). We also saw that requesting Data at
too frequent an interval resulted in more timeouts at each increasing Interest rate; dynamically served Data
showed substantial timeouts on both the 1.2 GHz phone and the 2.5 GHz phone when Interests were sent

34

at a 5ms interval.

On the 2.5 GHz phone, NFD’s CPU usage increased slightly as the Interest rate increased in both Data
serving schemes. On the 1.2 GHz phone, serving pre-signed Data also caused only a slight increase to NFD’s
CPU usage. But, when the 1.2 GHz phone served dynamically generated Data, NFD’s CPU usage decreased
due to the applications inability to serve Data quickly. In that case, NFD actually had to forward less Data
back to the consumer application which lowered NFD’s CPU usage.

5.2 Routing Protocols

Our work on NDN routing protocols continued in two parallel directions: conventional link-state routing
(Named-data Link State Routing, NLSR [6]) and update-less greedy routing (Hyperbolic Routing, HR [5]).

5.2.1 NLSR

NLSR is a name-based routing protocol that supports multi-path forwarding and uses a hierarchical trust
model to secure routing information. The global NDN testbed has operated NLSR since August 2014. In the
past year, we worked on refactoring the NLSR code to improve readability and modularity, as well as adding
unit tests to provide more thorough test coverage for our code. In addition, we worked with users of NLSR
to track down and correct bugs. Through growing deployment of NLSR on the NDN testbed, currently 32
nodes and 87 links, we have learned of issues in NLSR’s operation that we would not have otherwise caught,
and resolved them successfully. We also continued to adapt NLSR to operate with the newest versions of
both ndn-cxx and NFD, and released version 0.2.1 on June 30, 2015. Finally, we updated the NLSR paper
to reflect our design and implementation changes [6]. We have also used NLSR to conduct our comparison
of link-state and hyperbolic routing algorithms.

5.2.2 Hyperbolic Routing with Adaptive Forwarding Strategy

Hyperbolic routing (HR) presents a potential solution to address the routing scalability problem in NDN. HR
does not use traditional routing tables or exchange routing updates upon changes in the network topology, but
uses pre-assigned hyperbolic coordinates to direct interests toward data. However, it introduces potential
drawbacks of sub-optimal routes for some destinations. To overcome these drawbacks, we designed and
implemented a new forwarding strategy called Adaptive Smoothed RTT-based Forwarding (ASF) and have
been evaluating the performance of hyperbolic routing with ASF [5]. Our experiments compare the packet
loss ratio, RTT, message overhead, and failure response time of data retrieval under link-state routing and
hyperbolic routing with various forwarding strategies, failure conditions, and topologies.

Design of Adaptive Smoothed RTT-based Forwarding (ASF)

To allow for variations in each next hop’s RTT measurement, ASF maintains a Smoothed-RTT (SRTT) for
each next hop. ASF groups and sorts the next hops based on their SRTT performance as well as their ability
to respond with Data. ASF prioritizes next hops that have previously returned Data and that have lower
SRTT measurements. When ASF receives an Interest to forward, it first tries to select the next hop that
is returning Data and has the lowest SRTT measurement. In this way, ASF is able to choose a path that
results in the lowest delay and that results in Data being returned. If no next hops fit this criteria, ASF will
attempt to forward the Interest to any lowest routing cost next hop that has not yet been used. Finally, if
ASF still has not picked a next hop, it will select the lowest routing cost next hop that was previously not
returning Data. This logic allows ASF to prioritize both delay and successful Data retrieval when making
forwarding decisions.

Since hyperbolic routing does not respond to short term changes in the network topology, new or recovered
links will not be detected if ASF continues to use an existing working path that does not include the link.
By periodically probing less used or unused next hops, ASF can learn about the performance of these new

35

Figure 5.4: Delay stretch of HR with ASF over link-
state routing (60-second Probing Interval)

Figure 5.5: Loss rate of HR with ASF (60-second
Probing Interval)

or recovering links. When ASF is due for a periodic probe and receives an Interest to forward, it will also
attempt to select a different next hop than the primary forwarding next hop to probe. ASF will first try to
probe the lowest routing cost next hop that has not yet been used, which allows for the strategy to quickly
learn the performance of new next hops. If all next hops have measurements from their use, ASF will sort
the next hops by their SRTT value if they are returning data and by their routing cost if they are not;
next hops that return Data take precedence over next hops that do not. ASF then assigns a probability to
each next hop where next hops that are higher priority receive a higher probability and lower priority next
hops receive a lower probability. ASF will then probabilistically select one of the next hops to forward the
probe Interest. Assigning probabilities in this manner allows ASF to more often probe next hops that have
previously performed well.

Preliminary Results

Below we present some preliminary results on the forwarding performance and cost of hyperbolic routing
with the support of ASF (HR/ASF) in a small topology. We measured the delay stretch and loss rate
of HR/ASF compared to a shortest path routing protocol, in this case link-state. We also compared the
overhead of HR/ASF (i.e., probes in ASF) with that of link-state routing (routing update messages). We
used a snapshot of the real NDN testbed with 22 nodes as the evaluation topology. The routing cost of each
link in the topology is set to the delay between the two neighboring nodes, and the hyperbolic coordinates
of the nodes are set equal to the coordinates of the AS to which these nodes belong [7]. Testbed nodes that
belong to the same AS have small disturbances added to make the coordinates unique. Each node advertises
one name prefix and produces ping data under that name prefix, and every node sends ping Interests to
every other name prefix once a second.

We ran evaluations with a probing interval of 30 and 60 seconds for ASF as well as different multi-path
factors (an upper limit on the number of next hops per name prefix) on the NDN testbed topology. Figure 5.4
shows the delay stretch of hyperbolic routing with a 60 second probing interval and a multi-path factor of 4.
The median stretch is very close to 1 and the 75th percentile stretch is slightly higher than 1. This shows
that the packet delays under HR are quite close to those under link-state routing except in a small fraction
of the cases. Figure 5.5 shows the loss rate for each node under hyperbolic routing (there are no losses in
link-state routing). We can observe that the more next hops available for the strategy, the lower the loss
rates, and a multi-path factor of 4 has nearly no loss for all the nodes. In terms of overhead, HR with a
60-second probing interval and multi-path factor of 4 has a lower overhead (0.98 pps per node) than that
of link state (1.05 pps per node). Our experimental results on topologies of up to 99 nodes show that HR’s
delay stretch has a median close to 1 and a 95th-percentile around or below 2. Our results also show that the
ASF probing overhead in dynamic topologies is much lower than the control overhead in link-state routing,
because HR does not incur any traditional routing protocol overhead other than probing.

While in our preliminary evaluations HR/ASF performed surprisingly well, there are many factors and

36

scenarios, e.g., larger topology size, mobility, and routing policies, that we have not yet considered, so it
is unclear whether the performance and overhead will scale in realistic Internet-scale settings. We also
did not optimize ASF’s various parameters, such as probing period and probability, dynamically based on
observed performance, or compare it with other previously proposed strategies [3, 8, 9, 11] to identify areas
of improvement. These research issues will be addressed in future work.

5.3 Scalable Forwarding

In the second year of the project, the Washington University team led efforts and made substantive con-
tributions in four primary areas: scalable forwarding, forwarding strategy, synchronization (discussed in
Section 4.1), and testbed development (discussed in Section 6.1).

In the area of scalable forwarding [10], we proposed, implemented, and evaluated a scalable FIB longest
name prefix lookup design based on the binary search of hash tables [13]. As reported in last year’s report,
we implemented the proposed design in software, using Intel DPDK [4] packet processing framework, and
demonstrated 10 Gbps forwarding throughput with one billion synthetic longest name prefix matching rules,
each containing up to seven name components. To the best of our knowledge, this is the largest dataset
that has been studied for longest name prefix lookup. As for in-network caching elements, we explored
Content Store design issues and evaluated the performance of a modified NDN repository based on the Redis
key-value store [12]. Our experimental work has shown that existing storage systems and databases, such as
Redis, can be employed in NDN to implement terabyte-scale repositories.

NDN introduces a new forwarding model, in which the forwarding plane can choose between multiple
interfaces when forwarding a packet. This forwarding strategy mechanism brings new opportunities but
it also introduces challenges when the application’s performance or correctness is affected by a conflict
between the application design and the assigned forwarding strategy; in practice, the forwarding strategy
is determined by network operators but at the same time application developers make implicit assumptions
about how packets are forwarded. Our early work [2] demonstrated the impact of the forwarding strategy
decision on the performance and correctness of existing NDN applications, and strongly suggests that work
remains in defining forwarding strategy as a reliable architectural component of NDN.

5.4 NDN/OSCARS Integration

OSCARS is a bandwidth reservation service available on certain ESnet nodes that enables layer-2, user
driven, end-to-end reservations to isolate large data transfers from other traffic. We have integrated NDN
with OSCARS through a protocol that allows users to specify how fast data is required. If reservation
is required, the NDN strategy layer communicates through OSCARS to create a reservation on certain
reservation-capable NDN faces. On successful reservation, NDN strategy uses the newly created high-speed
path for data transfer.

5.5 Plans for the Next Year

In the next year, we will develop features to fill some gaps in our architecture, motivated by the requirements
of the network environments, as well as pushing forward the experimentation and documentation.

• Autoconfiguration. Painless autoconfiguration is essential for usability, especially for mobile and in-
termittently connected environments. Autoconfiguration involves: (1) establishing NDN connectivity;
(2) obtaining appropriate keys; and (3) producers registering name prefixes to attract interests for
their data. In local environments where NDN can run directly over layer-2, nodes can locally broad-
cast Interests to discover neighbor gateways and available data, and figure out where to forward future
Interests by observing from which direction data packets return. When the NDN stack runs as an over-
lay on IP, it can perform local NDN gateway discovery in IP multicast-enabled domains or using DNS

37

and DHCP-derived local domains, or use home agent gateways based on pre-configured settings. Next
year’s effort will build on our preliminary work and develop a complete autoconfiguration functionality.

• Congestion Control. To support high-throughput applications (e.g. scientific big data transfer) and
low-latency applications (NDN-RTC), we need congestion control in the reference implementation
and deployed on the testbed. We plan to (1) design mechanisms for congestion detection, back-
pressure signaling, multi-path strategies, and consumer rate adjustment; (2) simulate and evaluate these
mechanisms; (3) implement them in NFD, and deploy them on the NDN testbed, and (4) develop library
APIs to provide rate control functionality to applications, and integrate them into both applications.

• Hyperbolic Routing (HR). Now that the hyperbolic routing code is stable, we plan to do real testbed
experiments to discover potential issues that may not surface in the emulated environment, and demon-
strate its feasibility together with applications.

• Documentation Our most successful documentation effort has been the NFD Developer’s Guide, which
explains how to interpret, use, and modify the NFD code base. In the next year we will follow this
model to expand documentation on other important components, particularly NLSR, automatic prefix
registration, and NFD management protocol.

References

[1] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang. SNAMP: Secure
namespace mapping to scale NDN forwarding. In 18th IEEE Global Internet Symposium (GI 2015),
April 2015.

[2] Hila Ben Abraham and Patrick Crowley. Forwarding strategies for applications in named data network-
ing. In Proceedings of the ACM IEEE Symposium on Architectures for Networking and Communications
Systems, 2016.

[3] Raffaele Chiocchetti, Diego Perino, Giovanna Carofiglio, Dario Rossi, and Giuseppe Rossini. Inform: A
dynamic interest forwarding mechanism for information centric networking. In Proceedings of the 3rd
ACM SIGCOMM Workshop on Information-centric Networking, ICN ’13, pages 9–14, 2013.

[4] Intel Corp. DPDK: Data Plane Development Kit, 2016. http://www.dpdk.org.

[5] Vince Lehman, Ashlesh Gawande, Rodrigo Aldecoa, Dmitri Krioukov, Lan Wang, Beichuan Zhang, and
Lixia Zhang. An Experimental Investigation of Hyperbolic Routing with a Smart Forwarding Plane in
NDN. In Proceedings of the IEEE IWQoS Symposium, June 2016.

[6] Vince Lehman, A K M Mahmudul Hoque, Yingdi Yu, Lan Wang, Beichuan Zhang, and Lixia Zhang. A
secure link state routing protocol for NDN. Technical Report NDN-0037, NDN Project, January 2016.

[7] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat. Greedy Forwarding in Dynamic Scale-Free
Networks Embedded in Hyperbolic Metric Spaces. In IEEE Conference on Computer Communications
(INFOCOM), San Diego, CA, Mar 2010. IEEE.

[8] Haiyang Qian, R. Ravindran, Guo-Qiang Wang, and D. Medhi. Probability-based adaptive forwarding
strategy in named data networking. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on, pages 1094–1101, May 2013.

[9] Klaus M Schneider and Udo R Krieger. Beyond network selection: Exploiting access network heterogene-
ity with named data networking. In Proceedings of the 2nd International Conference on Information-
Centric Networking, pages 137–146. ACM, 2015.

[10] Tian Song, Haowei Yuan, Patrick Crowley, and Beichuan Zhang. Scalable name-based packet forward-
ing: From millions to billions. In Proceedings of the 2nd ACM Conference on Information-Centric
Networking, September 2015.

[11] Cheng Yi, Jerald Abraham, Alexander Afanasyev, Lan Wang, Beichuan Zhang, and Lixia Zhang. On
the role of routing in named data networking. In ACM SIGCOMM ICN Conference, 2014.

38

http://www.dpdk.org

[12] Haowei Yuan. Scalable NDN Forwarding, 2015. Doctoral Thesis. Washington University in St. Louis,
Department of Computer Science & Engineering.

[13] Haowei Yuan and Patrick Crowley. Reliably scalable name prefix lookup. In Proceedings of the ACM
IEEE Symposium on Architectures for Networking and Communications Systems, May 2015.

[14] Yu Zhang, Alexander Afanasyev, Jeff Burke, and Lixia Zhang. A Survey of Mobility Support in Named
Data Networking. Proceedings of the third Workshop on Name-Oriented Mobility: Architecture, Algo-
rithms and Applications (NOM’2016), April 2016.

39

Chapter 6

Evaluation

Contributors
PIs Beichuan Zhang (Arizona), Van Jacobson & Lixia Zhang (UCLA), Lan Wang (Mem-

phis), Christos Papadopoulos (Colorado State University), Patrick Crowley (Washington

University)

Grad Students . . Junxiao Shi, Jerald Abraham, Yi Huang (Arizona); Yingdi Yu, Wentao Shang, Spyridon

Mastorakis (UCLA), Steve DiBenedetto, Chengyu Fan (Colorado State), Haowei Yuan,

Hila Ben Abraham (Washington University)

Undergrads Ashlesh Gawande, Vince S. Lehman (5/2014 – 11/2014) (Memphis)

Staff John DeHart, Jyoti Parwatikar (Washington University), Vince Lehman (Memphis)

Researcher: Alex Afanasyev (UCLA)

6.1 NDN Testbed: Deployment, Management, Expansion

The NDN team at Washington University operates and manages the global NDN testbed, which as of March
2016, has 31 nodes in 14 countries. The Washington University team also manages integration testing and
deployment activities. They have enhanced the monitoring tools for the NDN Testbed [1], and updated the
NDN real time testbed usage mapping tool to use a pure NDN paradigm. A central server on the Washington
University campus sends NDN Interests to client daemons that run on each of the testbed nodes. These
client daemons collect usage data and return it as content in data packets to the server. A web page at
http://ndnmap.arl.wustl.edu displays the usage data.

6.1.1 Lessons Learned from Testbed Use

During NLSR’s development we found use of the NDN testbed valuable for exposing and debugging issues
in implementation. In a controlled test environment, certain problems and bugs occur less frequently than
in a real testbed deployment. For example, we encountered an issue in NLSR when a router, configured as
a neighbor for other routers, was not enabled for a long period of time. This bug prevented other routers’
name prefixes from having their expiration time extended. We also observed a situation where a router tried
to fetch its own outdated Link State Advertisements (LSA) due to updates it received from elsewhere in the
network. This put the router in an infinite loop where it continuously tried and failed to retrieve its own
outdated LSA. Further, we discovered a sequence number problem that we detected in the testbed network
due to an incorrect bit mask used to copy the name LSA sequence number. For each of these problems, we
used the logs collected from the testbed to track down the cause of the issue. We had not considered test
cases for these scenarios and due to real world use in the testbed, we were able to discover and diagnose
these serious bugs in NLSR.

40

6.2 Mini-NDN

In the past year, we transitioned our development of the Mini-NDN emulator from a prototype to publicly
released software. We added a user-friendly experimentation framework for users to define and run NDN
experiments using simple syntax; the framework includes basic experiment examples for reference. We want
Mini-NDN to be as simple to use for as many users as possible, so we wrote and released documentation for
the major components of Mini-NDN and created a mailing list for user support. We released version 0.1.0
of Mini-NDN on July 15, 2015 and the current version 0.1.1 on November 4, 2015 (https://github.com/
named-data/mini-ndn/).

At the 2nd NDN Hackathon, we worked on a project to simplify statistic collection and data analysis
for Mini-NDN’s users. The Hackathon project moved the status information for each node in the network
from plain console output to a web interface. A user’s browser connects to the Mini-NDN network to gather
information. The interface includes reporting the status of NFD and NLSR, real-time metrics for each link’s
bandwidth consumption, and a dynamic graph that plots measurements recorded by NFD (e.g., number of
Interests, number of PIT entries, etc.). The project won the Best Internal Impact prize for its potential in
improving the analysis of various NDN applications for the NDN team.

References

[1] Zeév Lailari, Hila Ben Abraham, Ben Aronberg, Jackie Hudepohl, Haowei Yuan, John D. DeHart, Jyoti
Parwatikar, and Patrick Crowley. Experiments with the Emulated NDN Testbed in ONL. In Proceedings
of the 2nd ACM Conference on Information-Centric Networking. ACM, 2015.

41

https://github.com/named-data/mini-ndn/
https://github.com/named-data/mini-ndn/

Chapter 7

Impact: Education

Contributors
PIs Christos Papadopoulos (CSU), Lan Wang (Memphis), Beichuan Zhang (Arizona), Van

Jacobson, Jeff Burke, Lixia Zhang (UCLA)

7.1 Education Efforts

The NDN group continues to produce a significant amount of educational material, which can be found at
the following URL: http://www.named-data.net/education.html.

7.1.1 UCLA

Lixia Zhang taught a graduate course “CS217A: Internet Architecture & Protocols” during Winter 2016
quarter, where she devoted three lectures on an introduction to NDN and made compared NDN with today’s
TCP/IP protocol architecture. About half of the students in the class signed up for optional term projects
on NDN research topics, which they carried over to CS217B in Spring 2016 quarter to finish up.

During the Spring 2015 and Spring 20116 quarters, Lixia Zhang taught CS217B on “Advanced Topics
in Internet Research”, a graduate seminar course focused on the NDN architecture design and application
development. In addition to covering NDN design literature, the course traces historical architectural ideas
from a series of research papers spanning the last few decades (e.g. [1, 4, 2]). Students also learned about
other architectural designs under NSF’s FIA program, in particular eXpressive Internet Architecture [5] and
Mobility First [6]. In parallel to in-class discussions, the students carried out research projects on NDN
design and development. The students finished the following projects during Spring 2015 quarter. The first
three projects utilized named data communication to enable serverless distributed applications.

• Shared WhiteBoard Over Named Data Network (NDN) on Android,

• Photo Sharing NDN Applications on Android, and

• Porting a turn-based Android game to NDN (Android).

• Wireshark Dissector for NDN Packet Format, now used by the NDN network management toolkit.

• Android Key Manager, now part of the NDNfit implementation (Section 2.2).

• nTorrent: BitTorrent over NDN – now evolved into a complete design (please see nTorrent project
under Spring 2016).

• NDN Security Certificate Logger Design to support long-lived data validation, now incorporated into
the NDN signature logger implementation, reported in a paper submitted to ICN 2016.

• NDN Security Schema Design And Implementation, now incorporated into the NDN security library.

42

http://www.named-data.net/education.html

Three of the above projects became student master projects that fulfilled the M.S. degree requirements.

Research projects carried out during Spring 2016 quarter include the following:

• Mitigating content poisoning attacks in NDN, extending results in [3].

• Evaluation of the design and performance of ChronoSync 2.0 using ndnSIM (see also Section 4).

• Implementing NDN Sync Protocol on RIOT OS for Internet of Things.

• Local NDN hub discovery for automatic NDN network attachment.

• Secure poker games on an Named Data Network, which used NDN’s security primitives to address a
difficult application scenario.

• Implement nTorrent: A Peer-to-Peer file download system over NDN. We expect to experiment with
this new application over the NDN testbed in June 2016.

• NDN Open mHealth pilot applications, as part of the NDNfit (Section 2.2) development efforts.

7.1.2 University of Memphis

Lan Wang supervised Alejandro Gil Torres, an exchange student from Spain who did his undergraduate
thesis on NLSR. The student implemented additional statistics collection to the NLSR code and used these
statistics to evaluate the performance impact of several NLSR default timer value settings.

Lan also gave a seminar talk at University of Mississippi on NDN, titled “Architectural Development and
Routing Design in Named Data Networking” (http://www.cs.olemiss.edu/node/435).

7.1.3 Colorado State University

CSU continued to teach NDN and assign NDN-related programming assignments in the graduate networking
course. We did not include NDN in the undergraduate networking course in the Fall 2015 because PI
Papadopoulos was on sabbatical. PI Papadopoulos included a strong NDN component in his graduate class
in Spring 2016, which used NFD and the ndn-cxx C++ library. The class included an implementation of a
content distribution network using IP and then using NDN. There were strong comments from the students
about how much easier it was to implement the project with NDN. Graduate students working on NDN
taught part of the class. The class used project templates developed at CSU and published on the NDN web
site.

Papadopoulos gave a webinar on NDN at ENCITE (Enhancing Cyberinfrastructure by Training and
Engagement) titled “An Overview of NDN” on 11 March 2016. The recording can be found at https://

events-na12.adobeconnect.com/content/connect/c1/1282664749/en/events/event/shared/default_

template/event_registration.html?sco-id=1484223888&_charset_=utf-8.

7.1.4 Washington University in St. Louis

John Dehart taught Introduction to Networking in Fall 2015 and had Hila Ben Abraham, a graduate student,
give a guest lecture on NDN during the course.

7.2 NDN Tutorial at ICN 2015

During ACM’s Information-Centric Networking 2015 conference, we held a full day tutorial on synchroniza-
tion and security in Named Data Networking (NDN). This tutorial shared important architectural concepts
that we are exploring in these areas, the software we have built to perform these tasks, and remaining open
issues. In particular, it emphasized how the existing open source toolset provides a platform for exploring
the open research questions. The tutorial introduced conference participants to emerging features of the
available toolsets. In addition to referencing a variety of existing examples, the tutorial used the creation

43

https://events-na12.adobeconnect.com/content/connect/c1/1282664749/en/events/event/shared/default_template/event_registration.html?sco-id=1484223888&_charset_=utf-8
https://events-na12.adobeconnect.com/content/connect/c1/1282664749/en/events/event/shared/default_template/event_registration.html?sco-id=1484223888&_charset_=utf-8
https://events-na12.adobeconnect.com/content/connect/c1/1282664749/en/events/event/shared/default_template/event_registration.html?sco-id=1484223888&_charset_=utf-8

of a modern browser-based application to illustrate writing NDN applications, leveraging 1) multi-party
synchronization, 2) schematized trust, 3) encryption-based access control.

The main objective of the tutorial was to introduce the practical role of sync as a communication protocol,
available tools, and envisioned use cases. Specifically, we wanted students to understand how to move from
a general sync concept to specific sync designs, and the role that sync plays in the sample application. We
gave an introduction and brief comparison of the application design patterns based on the current prototypes
of applications, including ChronoShare, NLSR, NDNFit.

7.3 NDN Weekly Seminars

During this reporting period we continued our biweekly NDN seminar series among participating universities.
NDN seminars cover a wide range of topics that reflect ongoing NDN design and development efforts and
promote inter-campus exchanges and collaborations. Most speakers are graduate students from different
universities, presenting their work to a broad audience to exchange ideas, solicit feedback, and explore
cross-campus collaboration opportunities. In 2014 Shiguang Wang, a UIUC graduate student, and A K M
Mahmudul Hoque, a Memphis graduate student, collected topics and created the schedule. In 2015 Jongdeog
Lee, a UIUC graduate student started coordinating the seminars, followed by Spyros Mastorakis at UCLA.

This year’s seminars took place from 5/15 - 4/16 and covered the following topics:

• May 27: Prof. Pedro de las Heras Quires (UCLA Visiting Scholar), ”Application of Macaroons for
distributing encryption keys and providing access control in NDN applications”

• July 15th Ashlesh Gawande (Univ. of Memphis), ”Mini-NDN: A light weight emulation tool for Named
Data Networking”

• August 12th Susmit Shannigrahi and Chengyu Fan (Colorado State Univ.), ”NDN for Scientific Data
Applications”

• August 26th Eva M. Castro and Pedro de las Heras Quiros (Universidad Rey Juan Carlos, Spain),
”Redesign of ChronoSync”

• October 7th Ryan Bennett (Colorado State University), ”NDN-IO: Rapid Prototyping for Node.js and
Browse”

• October 28th Jongdeog Lee (UIUC), ”InfoMax-An Information Maximizing Transport Layer Protocol
for Named Data Networks”

• December 2nd Rodrigo Aldecoa (Northeastern University), ”Hyperbolic Routing (Theory)”

• December 16th Vince Lehman (University of Memphis), ”Hyperbolic Routing (Implementation)”

• 10 February 2016 Yingdi Yu (UCLA), ”Schematizing Trust in Named Data Networking”

• 24 February 2016 Peter Gusev (UCLA REMAP), ”Real-Time Videoconferencing over NDN”

• 2 March 2016 Susmit Shannigrahi (Colorado State University), ”Scientific Data Applications in NDN”

• 16 March 2016 Ben Murphy (University of Memphis), ”Performance measurements of Android devices
in NDN”

References

[1] David D Clark and David L Tennenhouse. Architectural considerations for a new generation of protocols.
ACM SIGCOMM Computer Communication Review, 20(4):200–208, 1990.

[2] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden. Tussle in cyberspace: defining
tomorrow’s internet. In ACM SIGCOMM, 2002.

[3] Stephanie DiBenedetto and Christos Papadopoulos. Mitigating Poisoned Content with Forwarding Strat-
egy. Proceedings of the third Workshop on Name-Oriented Mobility: Architecture, Algorithms and Ap-
plications (NOM’2016), April 2016.

44

[4] Sally Floyd, Van Jacobson, Steven McCanne, Lixia Zhang, and Ching-Gung Liu. A reliable multicast
framework for light-weight sessions and application level framing. In SIGCOMM, 1995.

[5] David Naylor, Matthew K. Mukerjee, Patrick Agyapong, Robert Grandl, Ruogu Kang, and Michel
Machado. XIA: Architecting a More Trustworthy and Evolvable Internet. ACM SIGCOMM Computer
Communication Review (CCR), 44(3):50–57, Jul 2014.

[6] Arun Venkataramani, James Kurose, Dipankar Raychaudhuri, Kiran Nagaraja, Suman Banerjee, and
Morley Mao. MobilityFirst: A Mobility-Centric and Trustworthy Internet Architecture. ACM SIGCOMM
Computer Communication Review (CCR), 44(3):74–80, Jul 2014.

45

Chapter 8

Impact: Expansion of NDN
Community

The NDN project is attracting ever-increasing attention from the global networking community. The PIs
participated in conferences and speaking engagements, as listed below, and engaged with a variety of interns
and visiting researchers from universities and industry. These formal and informal efforts have helped to
disseminate research results and project ideas, as well as practical information about the NDN code base.

8.1 The Second NDN Community meeting

The second NDN Community Meeting was held at UCLA in Los Angeles, California on September 28–29,
2015 [2]. The meeting provided a platform for the attendees from 63 institutions across 13 countries to
exchange their recent NDN research and development results, to debate existing and proposed functionality
in NDN forwarding, routing, and security, and to provide feedback to the NDN architecture design evolution.

8.2 Expansion of the NDN Consortium and Testbed

The NDN consortium established in 2014 continued its expansion, adding two industrial and five academic
members:

1. ViaSat

2. Juniper Networks

3. Federal University of Par, Brazil

4. National Institute of Technology Karnataka, Surathkal

5. Northeastern University

6. TNO, the Netherlands Organization for Applied Scientific Research

7. University of Maryland, College Park

Over the last year we added new nodes to the NDN testbed [1] growing it to 31 Nodes with 84 links:

1. the Norwegian University of Science and Technology (NTNU)

2. the Korea Institute of Science and Technology Information (June 15)

46

3. COPELABS (Cognition and People Centric Computing) at University of Lusofona in Portugal

4. the University of Indonesia, Depok Indonesia.

5. University of Goettingen,

6. University of Indonesia,

7. Osaka University,

8. University of Minho in Portugal.

8.3 The 2nd ACM Information Centric Networking Conference

PI Van Jacobson presented the keynote at the 2nd ACM Conference on Information-Centric Networking.
The team presented four papers.

8.4 NDN-Related Workshops

Listed below are the NDN-related workshops held at different venues:

1. The Third Workshop on Name-Oriented Mobility: Architecture, Algorithms and Applications (NOM’2016),
in conjunction with IEEE INFOCOM, San Francisco, CA, April 11, 2016.

The NDN team presented two papers at this workshop.

2. Workshop on Multimedia Streaming in Information-/Content-Centric Networks (MuSIC 2016), in con-
junction with IEEE INFOCOM, San Francisco, CA, April 11, 2016.

3. Workshop on Content-Centric Networking (CCN 2015), in conjunction with IEEE International Con-
ference on Mobile Ad hoc and Sensor Systems, Dallas, TX, USA, October 19, 2015

The NDN team presented one paper at the workshop.

4. Workshop on Information Centric Networking Solutions for Real World Applications (ICNSRA), in
conjunction with IEEE GlobeCom 2015, San Diego, CA, USA, December 6, 2015.

47

Chapter 9

NDN Presentations

Listed below are presentations given by NDN-NP team members during the second year of the project.

1. Alex Afanasyev, “Named Data Networking: Data-Centric Future of the Internet”. Aerospace, May,
2016

2. Alex Afanasyev, “Supporting Mobility in Named Data Networking”, ICNRG Meeting, January 2016.

3. Alex Afanasyev, “Shaping a New Architecture by Architectural Principles”, ICNRG Meeting, Novem-
ber 2015.

4. Alex Afanasyev, “NDN protocol development: status of reference implementations, supporting software
releases, open architecture research issues”, ICNRG Meeting, October 2015.

5. Alex Afanasyev, “Schematized Trust: Design and Application”, NDN Community Meeting, September
2015

6. Alex Afanasyev, “Trust Schema: Name-Based Trust Management”, NDN Tutorial at ICN’2015, Septem-
ber 2015

7. Lan Wang, “Architecture Development and Routing Design in Named Data Networking,” Department
of Computer and Information Science, University of Mississippi, Oct. 2015

8. Jeff Burke, “NDN “NP” Application Update: Building Automation & Management / Io,” Osaka
University Murata Lab, Osaka, Japan, November 12, 2015.

9. Jeff Burke,“Named Data Networking,” Panasonic Advanced R&D, Osaka Japan, November 11, 2015.

10. Jeff Burke,“NDN Network Environments Update”, NSF FIA PI Meeting, Arlington, VA, 2015

11. Jeff Burke, “ICN Roadmaps for the next 2 years,” ACM ICN 2015, Panel participant with Cisco,
Orange, ESnet, PARC, Huawei, September 2015, San Francisco, CA.

12. Jeff Burke, “The Future of the Internet is the Future of Storytelling,” NDN Community Meeting, Los
Angeles, CA, September 29, 2015.

13. Jeff Burke, “From the Internet of Things to the Internet of Experiences,” ICCCN Cyberphysical
Systems Panel, Las Vegas, NV, August 3, 2015.

14. Jeff Burke, “ICN as an Enabler for New Forms of Multimedia Experience,” IEEE ICME MuSIC
Workshop, Invited Keynote and panel moderator, Torino, Italy, July 3, 2015.

15. Jeff Burke, Small Data CRI 2015, Invited workshop participant for Cornell Tech Small Data workshop,
New York, June 15-16, 2015.

48

16. Jeff Burke, Invited panel participant for Network Architecture panel with Mark Stapp of Cisco, GQ
Wang of Huawei, and Ignacio Solis of PARC, CCNxCon, San Jose, May 21, 2015.

17. kc claffy, “A Brief History of a Future Internet”, Usenix LISA 2015, Washington DC, November 13,
2015.

18. kc claffy and Lixia Zhang, “A Brief History of a Future Internet”, Usenix LISA Conversations, live
talk show, YouTube LISA Conversations Channel, April 26, 2016.

19. Patrick Crowley, “Named Data Networking, New Frontiers in Network, MIT. Cambridge, MA, April
30, 2015.

20. Patrick Crowley, “Global NDN Testbed,” NDN Community Meeting, UCLA. Los Angeles, CA, Septem-
ber 29, 2015.

21. Patrick Crowley, “NDN Startups,” NDN Community Meeting, UCLA. Los Angeles, CA, September
29, 2015.

22. Patrick Crowley, “Named Data Networking,” Internet2 TechEx Conference. Cleveland, OH, October
5, 2015.

23. Patrick Crowley, “Named Data Networking,” Washington University OIN Conference. St. Louis, MO,
October 20, 2015.

24. Christos Papadopoulos, “Named Data Networking: An Internet Architecture for the Future.”, Invited
talk, ESGF meeting, Monterey CA, Dec 2015.

25. Christos Papadopoulos, “Named Data Networking: An Internet Architecture for the Future.”, Invited
talk, LHCOPN-LHCONE meeting, Amsterdam NL, Oct 2015.

26. Christos Papadopoulos, “Named Data Networking: An Internet Architecture for the Future.”, Invited
talk, University of Memphis, Oct 2015.

27. Christos Papadopoulos, “Named Data Networking: An Internet Architecture for the Future.”, Keynote
presentation, NSF SwitchOn Workshop, Sao Paolo, Brazil, Oct 2015.

28. Christos Papadopoulos, “Managing Scientific Data with Named Data Networking”, NSF PI meeting,
Austin TX, Sept 2015

29. Christos Papadopoulos, “A Catalog for Scientific Data.”, CERN, Switzerland, July 2015.

30. Beichuan Zhang, “Information-Centric Internet of Things: Driving the Future Network Architecture,”
Beijing Jiao Tong University, June 2015

31. Beichuan Zhang, “Named Data Networking (NDN),” Beijing University of Post and Telecommunica-
tions, June 2015

32. Beichuan Zhang, “NDN Live Video Broadcasting over Wireless LAN,” IEEE ICCCN, Aug 2015

33. Beichuan Zhang, “Named Data Networking (NDN),” Future Network Development and Innovation
Forum, Dec 2015

34. Beichuan Zhang, “Routing in Named Data Networking,” NIST, Feb 2016

35. Lixia Zhang“Evolving Internet into the future via Named Data Networking,” Jilin University, China,
September 2015.

36. Lixia Zhang“Moving Internet into Future via Named Data Networking,” Fujitsu Corporation, Japan,
October 2015.

37. Lixia Zhang“Named Data Networking,” Keio University, Japan, October 2015.

49

38. Lixia Zhang“Named Data Networking: the Design of a New Internet Architecture,” Waseda University,
Japan, October 2015.

39. Lixia Zhang“NDN Design and development: recent progress,” Workshop on Research Activities and
Future of EU/US/JP ICN Projects, Tokyo, Japan, October 2015.

40. Lixia Zhang“Networking via Named Data,” Mitre Corporation, December 2015.

41. Lixia Zhang“Securing the Internet by Securing Data Directly,” National Chiao Tung University, Tai-
wan, December 2015.

42. Lixia Zhang“New Applications via Opportunistic Peer-to-Peer Wireless Communications,” NSF Wire-
less Cities Workshop, February 2016.

43. Lixia Zhang“Named Data Networking of Things,” US-Europe Workshop on the Next Generation In-
ternet of Things, March 2016.

44. Lixia Zhang“Looking back, looking forward: why Internet needs a new protocol architecture,” UCSD,
April 2016.

45. Lixia Zhang“Challenges in the Internet of Things Realization,” PKU-UCLA Joint Research Institute
In Science And Engineering 7th Annual Symposium, May 2016.

References

[1] The NDN project testbed. http://www.named-data.net/testbed.html, 2012.

[2] Alexander Afanasyev, Yingdi Yu, Lixia Zhang, Jeff Burke, kc claffy, and Joshua Polterock. The second
named data networking community meeting (NDNcomm 2015). ACM SIGCOMM Computer Communi-
cation Review, January 2016.

50

http://www.named-data.net/testbed.html

Chapter 10

Publications

Listed below are publications by NDN-NP team members during the second year of the NP project (1 May
2015 – 30 April 2016).

[1] Vince Lehman, Ashlesh Gawande, Rodrigo Aldecoa, Dmitri Krioukov, Lan Wang, Beichuan Zhang, and
Lixia Zhang. An Experimental Investigation of Hyperbolic Routing with a Smart Forwarding Plane in
NDN. In Proceedings of the IEEE IWQoS Symposium, June 2016.

[2] Peter Gusev, Zhehao Wang, Jeff Burke, Lixia Zhang, Eiichi Muramoto, Ryota Ohnishi, and Takahiro
Yoneda. Real-time streaming data delivery over Named Data Networking (invited paper). IEICE
Transactions, May 2016.

[3] Yu Zhang, Alexander Afanasyev, Jeff Burke, and Lixia Zhang. A Survey of Mobility Support in Named
Data Networking. Proceedings of the third Workshop on Name-Oriented Mobility: Architecture, Algo-
rithms and Applications (NOM’2016), April 2016.

[4] Stephanie DiBenedetto and Christos Papadopoulos. Mitigating Poisoned Content with Forwarding
Strategy. Proceedings of the third Workshop on Name-Oriented Mobility: Architecture, Algorithms and
Applications (NOM’2016), April 2016.

[5] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang, Yingdi Yu, Alexander Afanasyev, Jeff
Thompson, Jeff Burke, Beichuan Zhang, and Lixia Zhang. Named Data Networking of things. In
Proceedings of 1st IEEE International Conference on Internet-of-Things Design and Implementation
(IoTDI’2016), April 2016. (Invited paper).

[6] Alexander Afanasyev, Yingdi Yu, Lixia Zhang, Jeff Burke, kc claffy, and Joshua Polterock. The second
named data networking community meeting (NDNcomm 2015). ACM SIGCOMM Computer Commu-
nication Review, January 2016.

[7] Chengyu Fan, Susmit Shannigrahi, Steve DiBenedetto, Catherine Olschanowsky, Christos Papadopou-
los, and Harvey Newman. Managing scientific data with Named Data Networking. In Proceedings of
the Fifth International Workshop on Network-Aware Data Management, November 2015.

[8] Alexander Afanasyev, Zhenkai Zhu, Yingdi Yu, Lijing Wang, and Lixia Zhang. The Story of
ChronoShare, or How NDN Brought Distributed Secure File Sharing Back. In Proceedings of IEEE
MASS 2015 Workshop on Content-Centric Networks, October 2015.

[9] Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, and Lixia Zhang. Schematizing
Trust in Named Data Networking. In Proceedings of the 2nd International Conference on Information-
Centric Networking, September 2015.

[10] Ilya Moiseenko, Lijing Wang, and Lixia Zhang. Consumer/producer communication with applica-
tion level framing in Named Data Networking. In Proceedings of the 2nd International Conference
on Information-Centric Networking, September 2015.

51

[11] Peter Gusev and Jeff Burke. NDN-RTC: Real-time videoconferencing over Named Data Networking. In
Proceedings of the 2nd International Conference on Information-Centric Networking, September 2015.

[12] Tian Song, Haowei Yuan, Patrick Crowley, and Beichuan Zhang. Scalable name-based packet forward-
ing: From millions to billions. In Proceedings of the 2nd ACM Conference on Information-Centric
Networking, September 2015.

[13] Jongdeog Lee, Akash Kapoor, Md Tanvir Al Amin, Zhehao Wang, Zeyuan Zhang, Radhika Goyal, and
Tarek Abdelzaher. InfoMax: An information maximizing transport layer protocol for Named Data
Networks. In 24th International Conference on Computer Communication and Networks (ICCCN),
August 2015.

[14] Giulio Grassi, Davide Pesavento, Giovanni Pau, Lixia Zhang, and Serge Fdida. Navigo: Interest for-
warding by geolocations in vehicular Named Data Networking. In IEEE 16th International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), June 2015.

[15] Haowei Yuan and Patrick Crowley. Reliably scalable name prefix lookup. In Proceedings of the ACM
IEEE Symposium on Architectures for Networking and Communications Systems, May 2015.

[16] Fu Wenliang, Hila Ben Abraham, and Patrick Crowley. Synchronizing namespaces with invertible bloom
filters. In To appear in ANCS 2015, 2015.

NDN Technical Reports

All the reports are available online at http://named-data.net/publications/techreports/

[1] Minsheng Zhang, Vince Lehman, and Lan Wang. PartialSync: Efficient Synchronization of a Partial
Namespace in NDN. Technical Report NDN-0039, NDN, June 2016.

[2] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. NDN DeLorean: An Authentication System for Data
Archives in Named Data Networking. Technical Report NDN-0040, NDN, May 2016.

[3] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Challenges in iot networking via TCP/IP
architecture. Technical Report NDN-0038, NDN, February 2016.

[4] Vince Lehman, A K M Mahmudul Hoque, Yingdi Yu, Lan Wang, Beichuan Zhang, and Lixia Zhang. A
secure link state routing protocol for NDN. Technical Report NDN-0037, NDN Project, January 2016.

[5] Wentao Shang, Yingdi Yu, Teng Liang, Beichuan Zhang, and Lixia Zhang. NDN-ACE: Access control for
constrained environments over Named Data Networking. Technical Report NDN-0036, NDN, December
2015.

[6] A. Bannis and J. Burke. Creating a secure, integrated home network of things with Named Data Net-
working. Technical Report NDN-0035, NDN, 2015.

[7] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. Name-based access control. Technical Report NDN-
0034, Revision 2, NDN, January 2016.

[8] P. Gusev and J. Burke. NDN-RTC: Real-time videoconferencing over Named Data Networking. Technical
Report NDN-0033, NDN, 2015.

[9] NFD Team. NFD developer’s guide. Technical Report NDN-0021, Rev. 6, NDN, March 2016.

52

http://named-data.net/publications/techreports/

	Executive Summary
	Introduction
	Network Environments / Applications
	Enterprise Building Automation and Management
	Progress towards milestones

	Open mHealth
	NDNFit
	Progress towards milestones

	Mobile multimedia: ndnrtc (NDN real-time conferencing tool)
	Scientific Data Applications
	Climate modeling applications
	NDN in High Energy Particle Physics (HEP)

	Information Maximization
	Libraries
	ndn-cxx: NDN C++ library with eXperimental eXtensions
	NDN-CCL: Common Client Libraries

	Open Challenges Raised by Network Environment Development

	Security
	Name-based Access Control
	NDN DeLorean
	Content Poisoning Mitigation
	Plan For Next Year

	Distributed Dataset Synchronization
	Chronosync and iSync
	Round-Sync
	PartialSync
	Summary and Plan for Next Year

	Networking
	NDN Forwarding Daemon (NFD)
	NDN Link Protocol v2
	NFD Management Protocol
	Automatic Prefix Propagation
	Supporting Mobility and FIB Scaling with LINK
	Permanent Faces
	NFD on Android

	Routing Protocols
	NLSR
	Hyperbolic Routing with Adaptive Forwarding Strategy

	Scalable Forwarding
	NDN/OSCARS Integration
	Plans for the Next Year

	Evaluation
	NDN Testbed: Deployment, Management, Expansion
	Lessons Learned from Testbed Use

	Mini-NDN

	Impact: Education
	Education Efforts
	UCLA
	University of Memphis
	Colorado State University
	Washington University in St. Louis

	NDN Tutorial at ICN 2015
	NDN Weekly Seminars

	Impact: Expansion of NDN Community
	The Second NDN Community meeting
	Expansion of the NDN Consortium and Testbed
	The 2nd ACM Information Centric Networking Conference
	NDN-Related Workshops

	NDN Presentations
	Publications

