
DARPA scenario  
and NDN

Van Jacobson, vanj@cs.ucla.edu  
 

Nov. 20, 2015 
FIA-NP PI meeting  

Arlington, VA

• At inception, ‘networking’ is created by the people
that build network infrastructure.

• This creates a means-ends confusion that
marginalizes the edge.

• The genesis of a network is information exchange,
not infrastructure.

‣ The essence of information exchange is shared
convention and context.

NDN is an information-based  
networking framework.

It standardizes conventions and patterns  
that enable devices to achieve their  

information sharing objectives  
using any and all available  

communications technology.

(where “communications technology” is
anything that moves bits in time or space)

? /ndn/van/NDNtalk

/ndn/van/NDNtalk/v23/p1:

src

dst

FIB

DST

SRC

src

dst

FIB

DST

SRC

• Intermediate nodes are invisible

• Intermediate nodes can’t choose.

• Intermediate nodes can’t measure success

FIB

Content Store

Producer

Consumer

a/b/c/d

Data
a/b/c/d

?	a/
b/c

FIB

Content Store

Producer

Consumer

?	a/
b/c/

e

a/b

? a/b/c/e

FIB

Content Store

Producer

Consumer

?	a/
b/c/

e

a/b

• Packets say ‘what’ not ‘who’ (no src or dst)
• communication is to local peer(s)
• no lower layer dependencies - works over

anything.

FIB

Content Store

Producer

Consumer

?	a/
b/c/

e

a/b

• upstream performance is measurable
• memory makes loops impossible
• wireless, wires, storage & cycles look the same

• All the radios in an area behave as a mesh and
cooperate to extend range and route around dead
spots.

• When multiple technologies are in use (e.g., VHF
for normal operations, UWB in-building), adding a
bridge will combine them into a seamless, fully
connected net.

• Same story for multiple responders (e.g, police and
fire) using different technologies or frequencies.

‘Topology’ is an optimization – data goes only
where ‘interest’ has been expressed so a time
and bandwidth optimal local relay network is
automatically constructed for each set of content.

• Technology transitions don’t require a ‘flag day’
where everything has to be changed at once.

• Instead, the new technology can be incrementally
deployed together with a few ‘bridge boxes’ that
combine old and new.

The ability to automatically construct seamless
networks from different communications technologies
creates a system that evolves gracefully:

• Content can have multiple names (via links) and
names can be context dependent.

• For example, GPS or location limited communications
like UWB allow names like “/ThisBuilding” or  
“/ThisIncident”.

• This would allow, say, /ThisIncident/Police to talk
directly with /ThisIncident/Firemen without going
through a dispatcher.

• All content is cryptographically signed and
automatically authenticated by any receiver.

• The signing framework is multilevel and extensible
in a way that allows most communications control
policies to be implemented and enforced.

• Content can be automatically encrypted for privacy
with automatic key distribution.

Schematized Trust

• Today we (attempt to) secure the process of
communication by adding cryptographic wrappers
to the packet transport.

• This hasn’t worked well. One serious failing is an
intrinsic one-size-fits-all model of trust based on
endpoint identity.

• Information-centric architectures secure content,
not just the process of communicating it. They have
the potential to support richer and more granular
trust.

• To be successful, content-based trust machinery
must be easy to understand, configure and use.

• Simple ‘trust schemas’ (patterns / templates / …)
that can applied to whole classes of applications
would help achieve this.

• As a proof-of-principle, NDN has developed a
schematized trust framework and successfully
applied it IGP routing and IoT (building control and
instrumented environments).

NDN packets

• (opaque) data bytes

• A name for the data

• A signature over the name
and data together with the
name of the signing key
(another NDN packet).

NDN Data packets are structured
objects with three parts:

Selector
(order preference, publisher filter, scope, ...)

Nonce

Content NameContent Name

Data

Data packetInterest packet

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator, stale time, ...)

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678
Name of a chat packet published into the SFPD Precinct 123 “chat
channel” by Sgt. George Adams

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

signed by

Public key given to the PDA’s chat comm process when Sgt. Adams
authenticated himself & unlocked it today. Every packet sent by the
process is signed with this key.

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

signed by

Public key given to the PDA’s chat comm process when Sgt. Adams
authenticated himself & unlocked it today. Every packet sent by the
process is signed with this key.

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

US/CA/SF/PD/pr123/sgt/george.adams/key
Public key given to the pda when it was configured.

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

US/CA/SF/PD/pr123/sgt/george.adams/key
Public key given to the pda when it was configured.

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

US/CA/SF/PD/pr123/sgt/george.adams/key

US/CA/SF/PD/pr123/config/empl/975/key

US/CA/SF/PD/pr123/config/key

Public key given to the employee who configured the router.

Public key authorizing Precinct 123 configuration. (pr123 trust root)

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

US/CA/SF/PD/pr123/sgt/george.adams/key

US/CA/SF/PD/pr123/config/empl/975/key

US/CA/SF/PD/pr123/config/keyk4 = my.config.root
k3 = k4 +“empl”+ n
k2 = k3[-3] + rank + name
k1 = k2[-2] +“chat”+ k2[2-1] +“pkt”
pkt = k1 + n

Trust Schema describes how to construct or check
the key hierarchy that authorizes a service instance
to publish data in some namespace.
(see Schematizing and Automating Trust in Named Data Networking in Proceedings of ACM ICN 2015)

if (validTrustChain(pkt, schema) && signatureValid(pkt))
 process the packet

Usage

Since schema is just lexical constraints on key names, validation
normally only has to check that key name is appropriate for data name.

Only have to validate chain & signature for a key once.

Why so many names?

• Context provided by naming detects and prevents
misconfiguration and misbehavior.

• Names provide fine-grain trust that minimizes
damage from key exposure.

• Naming strictly limits scope of keys and prevents
repurposing.

Why so many levels?

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/678

US/CA/SF/PD/pr123/chat/sgt/george.adams/pkt/key

US/CA/SF/PD/pr123/sgt/george.adams/key

US/CA/SF/PD/pr123/config/empl/975/key

US/CA/SF/PD/pr123/config/key

US/CA/SF/PD/config/empl/51/key

US/CA/SF/PD/config/key

US/CA/F&S/config/empl/451/key

US/CA/F&S/config/key

Why so many levels?

• Same signing keys (with different trust schema)
used for cross org authentication / authorization.

…

US/CA/SF/PD/config/key

US/CA/F&S/config/empl/451/key

US/CA/F&S/config/key

…

US/CA/SF/FD/config/key

US/CA/F&S/config/empl/3251/key

US/CA/F&S/config/key

Model Properties
• Complete local autonomy - all keys are locally

generated and signed.

• No key distribution problem. Apps get their entire
trust chain from pda’s config then announce keys
to their peers.

• Once a trust schema has been picked, everything
else is simple and automatic.

Transport via set-
reconciliation (sync)

Transport thru the ages

A B

Sequence
number

Not received

Stuff to send

Received

Transport thru the ages

A B

Sequence
number

Not received

Stuff to send

Received

This models the process, not the outcome
(data movement is a side-effect)

A better way

? /ndn/broadcast/sync/
foo/bar/0x148e9

A B C D

Bob’s /foo/bar collection

sha(A) sha(B) sha(C) sha(D)

sha(• •)

sha(• •)

sha(• •)

= 0x148e9

A better way

? /ndn/broadcast/sync/
foo/bar/0x148e9

A B C D

Bob’s /foo/bar collection

sha(A) sha(B) sha(C) sha(D)

sha(• •)

sha(• •)

sha(• •)

= 0x148e9

A B C D E

sha(A) sha(B) sha(C) sha(D) sha(E)

sha(• •)

sha(• •)

sha(• •)

Alice’s /foo/bar collection

/ndn/broadcast/sync/foo/bar/
0x148e9/0xfe2d: E

= 0xfe2d

sha(• •)

A better way

Bob’s tweet collection

tweet/alice/1 tweet/alice/2 tweet/bob/1 tweet/bob/2

1 2 1 2

bob

tweet

alice

? /broadcast/sync/ 
tweet/bob/0x0

