

Named Data Networking

Patrick Crowley

New Frontiers in Networking MIT, 2015-04-30

Main Point in One Slide

NDN is based on a simple, coherent idea

IP's communication abstraction: channel between two endpoints

Based on telephones

Abstraction is root cause for many Internet problems

NDN's communication abstraction: **request for named data**Based on the web

Much better fit for today's networks, new future possibilities

Agenda

Introduce Named Data Network (NDN)

Describe the project and its goals

Illustrate NDN concepts

Describe how we work

Share This Presentation?

Named Data Networking

Patrick Crowley, John DeHart & the NDN Team

2013 China-America Frontiers of Engineering Symposium Beijing 5/15/2013

What about video? What would happen if it became popular?

What is the best way for me to share these slides with you right now?

Trust This Message?

```
From: C. D. (Dan) Mote, Jr. <dmote@email.edu>
Date: Mon, May 13, 2013 at 7:39 PM
Subject: Congratulations!
To: Patrick Crowley pcrowley@wustl.edu
Dear Prof. Crowley,
I write to inform you that you have been elected a
Fellow to the National Academy of Engineering. As you
may understand, this designation follows a process of
nomination and subsequent vote by existing Fellows.
Congratulations.
Sincerely,
C.D. Mote, Jr.
President-Elect, National Academy of Engineering
```

Easy to forge Internet communications!

Use Connected Environment/IoT?

3 Challenges Caused By 1 Problem

Telephony/Internet Process

- 1. Find the **number/address** for the one you want to talk to.
- 2. Use that number to establish a point-to-point connection.
- 3. Communicate!

Sharing Trust IoT Must know address
Place all trust in address
Know & trust all addresses

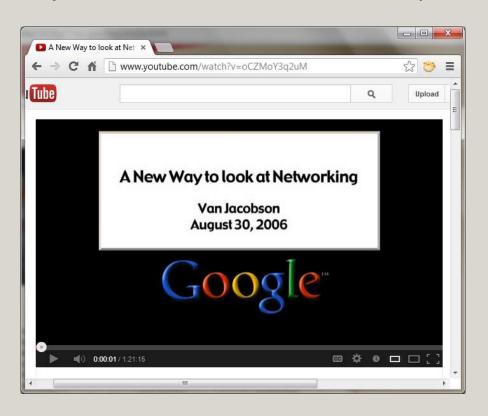
A Simpler Way

Suppose your device could ask for what it wanted?

/wustl.edu/pcrowley/talks/CAFOE_2013.pdf

/wustl.edu/pcrowley/video/thinkpad

/room/thermostat/1/status



The Web Has Named World's Data!

/www.youtube.com/watch?v=oCZMoY3q2uM

By volume, most digital communications are delivered via HTTP, aka requests for named data

/www.youtube.com/watch?feature=player_detailpage&v=oCZMoY3q2uM#t=1736s

Core Idea

Modern communication consists of requests for named data

Today's **networks** are based on **host-to-host connections**

NDN is a general-purpose network protocol built on requests for named data

Named Data Networking

- Leverages the strengths of the Internet, addresses weaknesses
 - Layers efficiently atop Ethernet, Bluetooth, UDP, TCP, ...
- Naturally accommodates
 - Mobile devices (name data not just end hosts)
 - Wireless and other broadcast-based link types (easy for interests/data)
 - Data authentication and security, privacy, anonymity (pkts are signed)
 - Policy-based forwarding, routing with loops (names permit policy expression)
- With NDN, we aim to show that
 - Communication is more secure
 - Infrastructure is more efficiently utilized
 - Applications are simpler

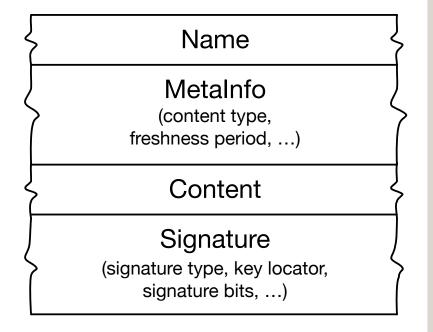
Replace the Internet?

NDN: Internet:: Internet: Bell System

NDN operates gracefully atop the Internet Protocols, and does not require wholesale replacement

NDN Team

- Project launch: 9/1/2010, part of NSF FIA Program
- NSF FIA Next Phase: started 4/15/2014.
- Research Areas:
 Architecture,
 Routing, Security,
 Applications,
 Scalable
 Forwarding


UCLA: Van Jacobson (Google), Jeff Burke, Lixia Zhang University of Arizona: Beichuan Zhang University of California, San Diego: Kim "kc" Claffy Colorado State University: Christos Papadopoulos University of Illinois, Urbana-Champaign: Tarek Abdelzaher University of Memphis: Lan Wang University of Michigan: J. Alex Halderman Washington University: Patrick Crowley

Two Packet Types

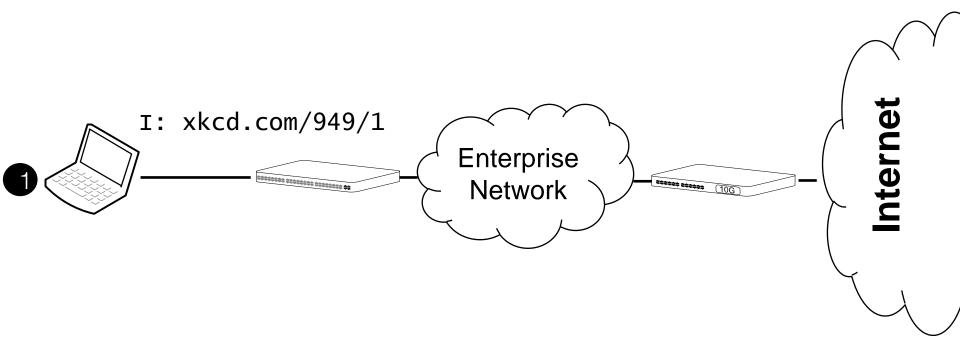
Interest Packet

Selectors (order preference, publisher filter, exclude filter, ...) Nonce Guiders (scope, Interest lifetime)

Data Packet

- No addresses
- Publishers bind names to data; receivers verify

NDN Interest Forwarding

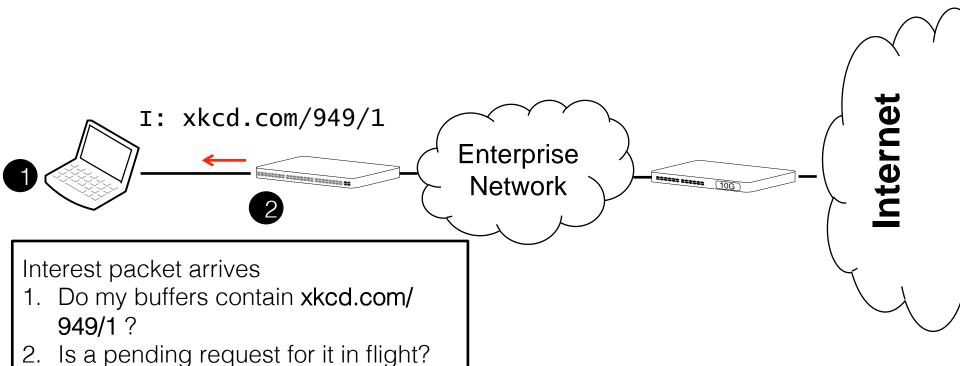

1. Do I have this data?

2. Is a request already pending?

3. Which next hop might lead to the source?

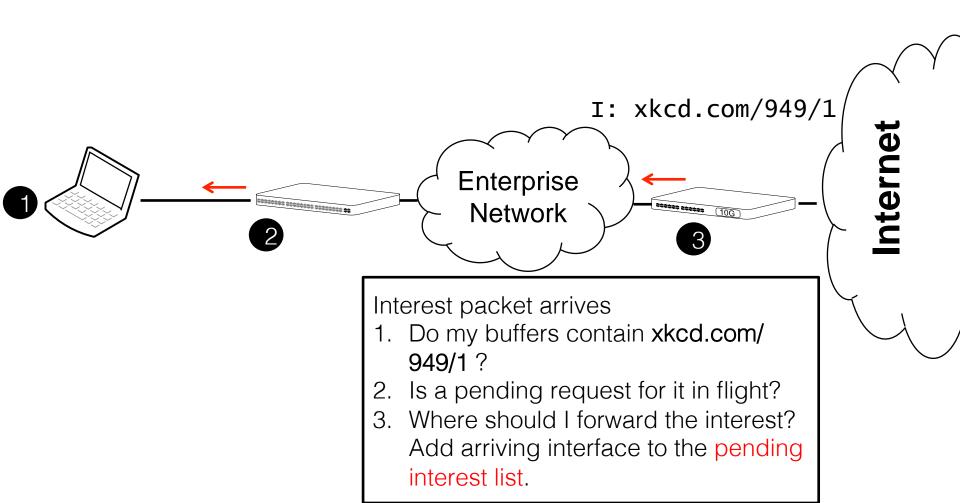
NDN Forwarding Illustrated

1 Emit Interest: xkcd.com/949/1

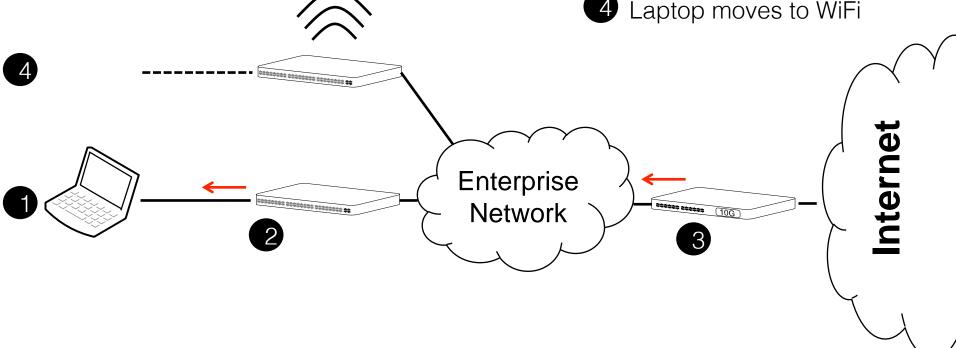

NDN Forwarding Illustrated

3. Where should I forward the interest?

interest list.


Add arriving interface to the pending

- 1 Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch


NDN Forwarding Illustrated

- 1 Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch
- 3 Interest arrives at gateway

NDN Forwarding Illustrated

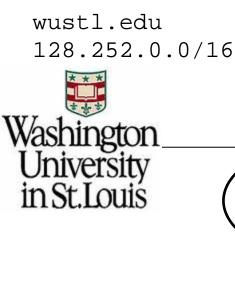
- Emit Interest: xkcd.com/949/1
- 2 Interest arrives at switch
- 3 Interest arrives at gateway
- 4 Laptop moves to WiFi

NDN Forwarding Emit Interest: xkcd.com/949/1 Illustrated 2 Interest arrives at switch 3 Interest arrives at gateway 4 Laptop moves to WiFi Data arrives Enterprise **Network** Data packet arrives 1. Store data packet in buffer. 2. Send packet out any matching interfaces on the pending interest

list.

Remove pending entries

NDN Forwarding Emit Interest: xkcd.com/949/1 Illustrated 2 Interest arrives at switch 3 Interest arrives at gateway I: xkcd.com/949/1 Finished! Laptop moves to WiFi Data arrives Interest resent Enterprise **Network**


Interest packet arrives

- Do my buffers contain xkcd.com/ 949/1? Yes, send it.
- 2. Is a pending request for it in flight?
- 3. Where should I forward the interest? Add arriving interface to the pending interest list.

IP Nodes and Routes

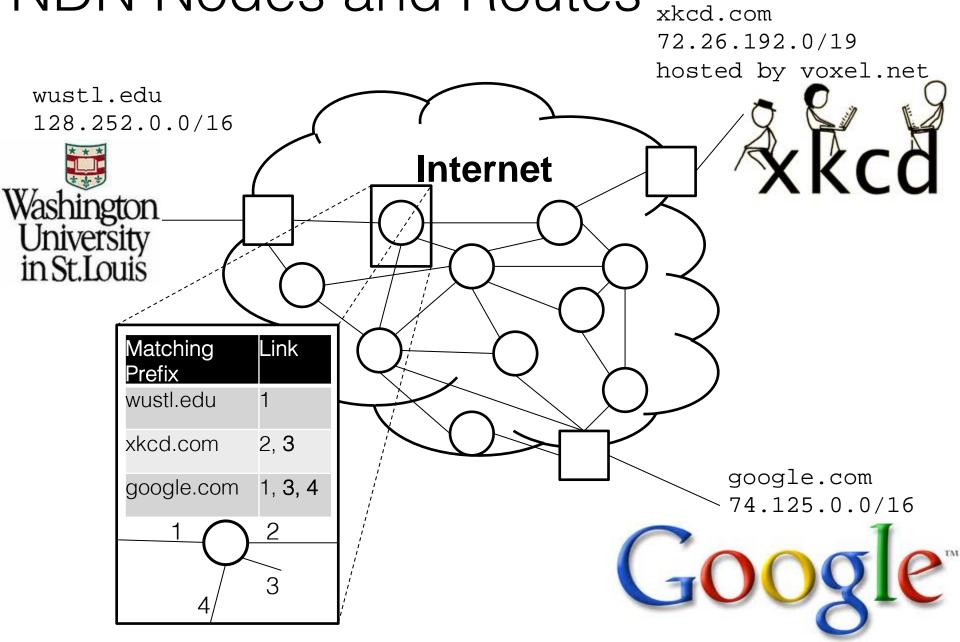
xkcd.com 72.26.192.0/19

hosted by voxel.net

Internet

Forwarding logic in IP

Extract destination address


- 2. Find longest matching prefix in route table
- 3. Forward packet out matching interface

google.com 74.125.0.0/16

IP Nodes and Routes xkcd.com 72.26.192.0/19 hosted by voxel.net wustl.edu 128.252.0.0/16 Internet Washington University in St.Louis Matching Link Prefix 128.252/16 72.26.192/19 2 google.com 74.125/16 3 74.125.0.0/16 2 3

NDN Nodes and Routes

Questions

- Can NDN efficiently support host-to-host patterns?
- Can NDN efficiently support user-specific data and services?
- Can you count clicks and ad impressions in NDN?

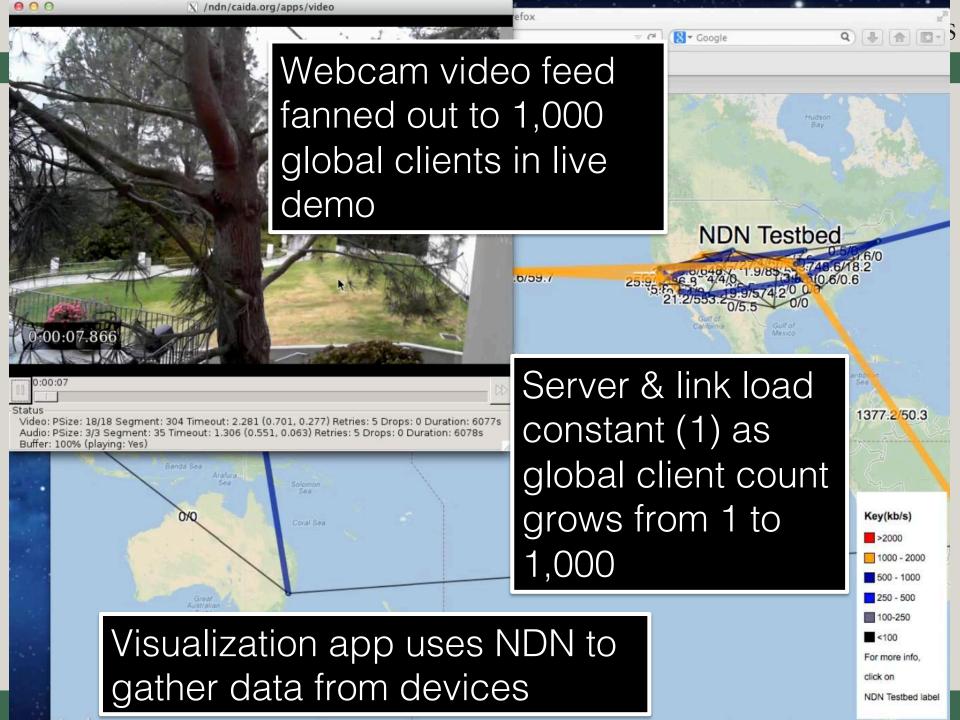
Yes!

- Can you efficiently route all those names?
- Can you scale the forwarding plane?
- Can you prove security and privacy properties?

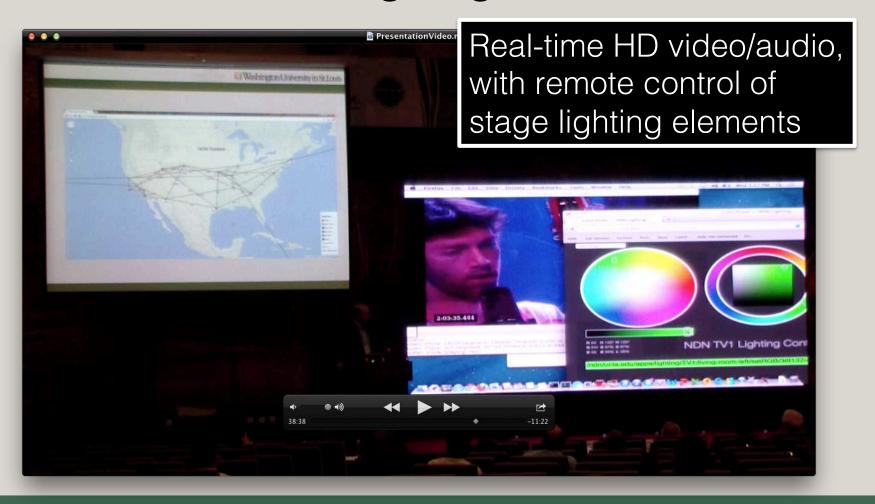
Yes, mostly!

Evaluation: We focus on use cases

- Team includes two app-focused Pls
 - Jeff Burke (UCLA), Tarek Abdelzehar (UIUC)
- NDN-NP agenda includes two focus environments
- Developed a growing collections of apps
 - HD Audio/Video player, "DropBox", decentralized group chat, building automation, stage lighting, ...
- We conduct annual, real-world demonstrations
- We compare to the Internet's state-of-the-art


End-to-end Focus is Primary

- Do NDN applications and services work, given realworld contexts?
- Many lower-level mechanisms are important to evaluate, but have secondary significance
 - Focused evaluations of: routing protocols, forwarding, transport-level synchronization, ...
- The value of end-to-end demonstrations
 - They help the team focus on the right issues
 - They help dispel misunderstandings about the architecture
 - Real code in real environments keeps the team honest


Global NDN Testbed: April 2015

- Consists of 24 Gateway Router Nodes
 - 9 at sites of the NDN PIs
 - 15 at sites of collaborators.
- Presence on 3 Continents
 - North America: 12 in USA
 - Asia: 3 in China, 1 in Japan, 1 in South Korea
 - Europe: 3 in France, 1 each in Spain, Switzerland, Italy & Norway

Live bluegrass band performance, NDN-based control of stage lights

Conclusion

- Growing evidence that with NDN
 - Communication is more secure
 - Infrastructure is more efficiently utilized
 - Applications are simpler
 - New things are possible
- Underway
 - Growing industry consortium
 - Active set of early commercial adopters, IETF activities
 - Focused deployments in healthcare, building automation
- Research community is growing
 - We share an open-source code base with projects and groups moving forwarding aggresively in Europe and Asia

http://named-data.net