
NDN, Technical Report NDN-0028, 2015. http://named-data.net/techreports.html
Revision 1: January 27, 2015

1

ndnSIM 2.0: A new version of the NDN simulator
for NS-3

Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko and Lixia Zhang
University of California, Los Angeles

{mastorakis, afanasev, iliamo, lixia}@cs.ucla.edu

F

Abstract—The fundamental departure of the Named-Data Networking
(NDN) communication paradigm from the IP principles requires exten-
sive evaluation through experimentation, and simulation is a necessary
tool to enable the experimentation at scale. We released the first version
of ndnSIM, an open source NS-3-based NDN simulator, back in June
2012. Since then, ndnSIM has undergone substantial development
resulting in ndnSIM 2.0, which was released in January 2015. This
paper reports the design and features of this new simulator version.
The goal of the new release is to match the simulation platform to the
latest advancements of NDN research. Therefore, it uses the ndn-cxx
library (NDN C++ library with eXperimental eXtensions) and the NDN
Forwarding Daemon (NFD) to enable experiments with real code in a
simulation environment.

1 INTRODUCTION

Named Data Networking (NDN) [1, 2, 3, 4] represents a
fundamental departure from today’s Internet architec-
ture which names the communication endpoints, and
aspires to be the successor of the TCP/IP protocol stack.
As a result, the various design options in the NDN archi-
tecture needs to be evaluated in large-scale experimen-
tation. However, it is infeasible to conduct such experi-
mentation with real-world infrastructure and simulation-
based evaluation becomes necessary. The main goal of
ndnSIM has always been offering the NDN community
a common, user-friendly, and open-source simulation
platform based on the NS-3 simulator framework [5].

The first public release of ndnSIM took place in June
2012 [6]. Since then, ndnSIM has become a popular
tool used by many researchers around the globe. At
the time of this writing, ndnSIM mailing list has over
300 subscribers, and more than 100 papers have been
published based on research done using ndnSIM.

Since the first ndnSIM release, though, the NDN team
has released an updated version of the protocol, mainly
featured by the ndn-cxx library (NDN C++ library with
eXperimental eXtensions) [9], and a new modular NDN
Forwarding Daemon (NFD) [7, 8]. The ndn-cxx library
implements the major NDN primitives that can be used
to implement various applications. It is an actively
developed project and it is used in practice for real
application experiments. NFD is a network forwarder

that implements and evolves together with the NDN
protocol. The main design goal of NFD is to support
diverse experimentation with the NDN architecture,
while emphasizing modularity and extensibility to allow
easy experiments with new protocol design features,
algorithms and applications. The main functionality of
NFD is to forward Interest and Data packets. To do this,
it abstracts lower-level network transport mechanisms
into NDN Faces, maintains basic data structures like
Content Store (CS), Pending Interest Table (PIT), and
Forwarding Information Base (FIB), and implements the
packet processing logic. In addition to basic packet for-
warding, it also supports multiple forwarding strategies,
and a management interface to configure, control, and
monitor NFD

The goal of this new ndnSIM release is to match
the simulation platform to the aforementioned latest
advancements of NDN research and also consolidate
the efforts of using code written for the simulator in
real experiments and code from real experiments in the
simulated environment. In this way, ndnSIM 2.0 offers
a better user experience and more realistic simulation
behavior. Namely, ndnSIM 2.0 has the following major
enhancements and features compared to the first release:

• All NDN forwarding and management is imple-
mented directly using the source code of NFD.

• ndnSIM directly uses implementation from the ndn-
cxx library.

• The used packet format changed to the latest NDN
packet format.

This version of the simulator, just like the previous
one, is implemented in a modular way using different
C++ classes to model the behavior of each NDN entity:
Application and Network Device Face, NFD’s Forward-
ing Interest Table (FIB), Pending Interest Table (PIT) and
Contest Store (CS), etc. This modular structure allows
the easy modification or replacement of any component
with no or minimal impact on the other components.
In addition, the new release provides a more extensive
collection of interfaces and helpers to perform detailed
tracing of every component, as well as of the NDN traffic

http://named-data.net/techreports.html


2

flow.
In order to improve the user experience even more,

we encourage the community to provide us valuable
feedback by submitting bug reports. We also welcome re-
quests for new feature development.1 More information
about the simulator, basic examples, and tutorials are
available on the ndnSIM website: http://www.ndnsim.
net/.

2 DESIGN

The design for ndnSIM 2.0 has been directed by our aim
to achieve full integration with Named Data Networking
Forwarder (NFD) [7, 8]. In this section, we present
the overall design of ndnSIM and demostrate its main
structural components and the way that they interact
with each other.

2.1 Design summary

The design of ndnSIM 2.0 includes various changes
compared to that of the first release, which were mainly
prompted by the NFD integration. Despite the fact that
the NDN protocol stack (ndn::L3Protocol) that is in-
stalled in each simulation node still remains the core
component of the ndnSIM, the packet processing is
now performed based on the NFD implementation (with
minor NS-3 specific changes).

As a result of the NFD integration, the code used
for any experiments with NDN forwarding (e.g., custom
forwarding strategies) by the real NFD implementation
can be directly used by ndnSIM, and vice versa, offering
to the researchers the flexibility to simulate scenarios
with different strategies assigned to different namespace.
In other words, the forwarding plane extensions can
be used in both ndnSIM simulations and real NFD
deployment, a feature that was not feasible using the
previous version of the simulator. Moreover, the per-
namespace strategy feature, the full-featured support for
Interest selectors and crypto operations and the use of
the full-featured NDN packet format were not possible
to be simulated before. These new features ensure that
the simulations are maximally realistic. Despite these
introduced features, ndnSIM 2.0 is only slightly slower
than ndnSIM 1.0. However, its memory consumption is
higher than ndnSIM 1.0, but it is still within a reasonable
limit, so that demanding simulations can run on some
general-purpose hardware.

ndnSIM is implemented as a new network-layer proto-
col model and can run on top of any available link-layer
protocol model (point-to-point, CSMA, wireless, etc.). In
addition to that, the simulator provides an extensive
collection of interfaces (i.e., Face, Network Device Face
and Application Face abstractions) and helpers (i.e.,
Application, FIB, Global Routing, Link Control, NDN

1. Bug reports and feature recommendations can be submitted
on the NDN project issue tracking system website: http://redmine.
named-data.net/projects/ndnsim

Face
{ndn::AppFace} Face

{ndn::NetDeviceFace}

NDN Protocol Stack
{ndn::L3Protocol}

NFD

NetDeviceApplications

Content 
Store 

{nfd::Cs}
PIT 

{nfd::Pit}
FIB 

{nfd::Fib}

Forwarding 
Strategy

{nfd::fw::*}

 Content Store
{ndn::cs::*}

Face
{nfd::Face}

NFD

ndnSIM
core

Upper 
layer

Fig. 1: Structural diagram of the ndnSIM design compo-
nents

Stack and Strategy Choice helpers) to perform detailed
tracing behavior of every component, as well as NDN
traffic flow.

The basic components of this ndnSIM release are
shown in Figure 1 and a comparison among their design
principles and features for the new and the previous
release of the simulator is presented in Table 1. These
components are also listed below:

• ndn::L3Protocol: NS-3 abstraction of the NDN stack
implementation. Its main task is initialization of the
NFD instance of each node that participates in the
simulation scenario and provides tracing sources to
measure NDN performance (sent/received interest
and data, satisfied/unsatisfied interests).

• NFD: implementation of the Named Data Network-
ing Forwarding Daemon, including:
– nfd::Forwarder: main class of NFD, which owns

all faces and tables of the NDN router node and
implements NDN forwarding pipelines.

– nfd::Face: base class of NFD Face abstraction that
implements the required communication primi-
tives to actually send and receive Interest and
Data packets.

– nfd::Cs: the cache of Data packets that is used
by NFD. The current release of ndnSIM also
includes the old ndn::ContentStore abstraction
ported from the previous release to enable richer
options for simulation of content store operations
(nfd::Cs is not yet as flexible when it comes to
cache replacement policies).

– nfd::Pit: the Pending Interest Table (PIT) of NFD
keeps track of Interest packets that were for-
warded upstream toward one (or more) content
source(s). In this way, Data can be sent down-
stream to one (or more) requester(s).

– nfd::Fib: the Forwarding Information Base (FIB) is
used to forward Interest packets toward one (or

http://www.ndnsim.net/
http://www.ndnsim.net/
http://redmine.named-data.net/projects/ndnsim
http://redmine.named-data.net/projects/ndnsim


3

TABLE 1: Comparison among the components of ndnSIM 2.0 and ndnSIM 1.0

Component of
ndnSIM 2.0

Component existed in
ndnSIM 1.0?

Features/Design principles inherited from
ndnSIM 1.0

Features/Design changes introduced in
ndnSIM 2.0

ndn::L3Protocol Yes The core component of ndnSIM NFD integration
nfd::Forwarder Existed as

ndn::ForwardingStrategy
– As a result of integration with NFD, packet

forwarding is split into forwarding pipelines
and forwarding strategy decisions

nfd::Face Existed as ndn::Face Base class for ndn::AppFace and
ndn::NetDevice-Face

Abstraction implemented by NFD

ndn::AppFace Yes Enables communication with applications Realization of nfd::Face abstraction
ndn::NetDeviceFace Yes Enables communication with other

simulated nodes
Realization of nfd::Face abstraction

ndn::cs Yes Same design NFD integration
nfd::Cs Existed as ndn::cs – 1) Interest selectors handling

2) Not yet flexible to cache policies
nfd::Pit Existed as ndn::pit – Abstraction implemented by NFD
nfd::Fib Existed as ndn::fib – Abstraction implemented by NFD

nfd::fw::Strategy Existed as
ndn::ForwardingStrategy

– 1) Per namespace strategy
2) Different built-in strategies

Applications Yes Equivalent functionality Use of the ndn-cxx library
Trace helpers Yes Equivalent functionality Directly trace events from NFD

more) potential source(s).
– nfd::fw::Strategy: the forwarding strategy in NFD

makes the decisions regarding whether, when,
and where the Interest packets will be forwarded.
nfd::fw::Strategy is an abstract class that needs
to be implemented by all the built-in or custom
forwarding strategies.

• ndn::AppFace: realization of the nfd::Face abstrac-
tion to enable communication with applications.

• ndn::NetDeviceFace: realization of the nfd::Face ab-
straction to enable communication with other sim-
ulated nodes.

• Basic NDN applications: implementation of built-in
NDN consumer and producer applications that can
generate and sink NDN traffic. These applications
include parameters that can be configured by the
user in the simulation scenario and thus generate
NDN traffic according to a user-defined pattern.

• Trace helpers: a collection of trace helpers that
simplify collection and aggregation of various nec-
essary statistical information about the simulation
and write this information in text files.

2.2 Core NDN protocol

The core component of the ndnSIM architecture is
ndn::L3Protocol. Like the previous version of the simu-
lator, this component is an implementation of the NDN
protocol stack, which can be installed in each node in a
way simiar to the IPv4 or IPv6 protocol stacks. In this
version of the simulator, however, when it is installed
on a NS-3 node, it performs the initialization of the NFD
instance and creates the necessary NFD managers (i.e.,
FibManager, FaceManager, StrategyChoiceManager), ta-
bles (i.e., PIT, FIB, Strategy Choice, Measurements), and
special faces (i.e., Null Face, Internal Face). In addition to
that, the ndn::L3Protocol class defines a refactored API
to handle the registration of new nfd::Face instances to
NFD using the AddFace method and enables NDN-level
packet tracing.

2.3 Named Data Networking Forwarding Daemon
This is an entirely new component of the ndnSIM ar-
chitecture. Its main functionality is to forward Interest
and Data packets. Towards that goal, NFD abstracts
lower-level network transport primitives into nfd::Face
instances, maintains the well-designed data structures of
CS, PIT and FIB, and implements the packet processing
logic. ndnSIM integrates NFD codebase to do all the
Interest and Data packet processing actions. In the first
half of this section, we describe NFD in detail and, in the
second half, we mention the major challenges that we
had to address towards the aforementioned integration.

2.3.1 NFD Internal Structure
According to the NFD Developer’s Guide [7], the basic
modules of NFD are the following:

• ndn-cxx Library, Core, and Tools: Provides various
common services shared between different NFD
modules.

• Faces: Implements the NDN Face abstraction on top
of various lower level transport mechanisms.

• Tables: Implements the Content Store (CS), the
Pending Interest Table (PIT), the Forwarding Infor-
mation Base (FIB), StrategyChoice, Measurements,
and other data structures to support forwarding of
NDN Data and Interest packets.

• Forwarding: Implements basic packet processing
pipelines, which interact with Faces, Tables, and
Strategies.

• Management: Implements the NFD Management
Protocol, which allows applications to configure
NFD and set/query NFD’s internal states.

• RIB Management: Manages the routing information
base (RIB). This component is not yet supported by
ndnSIM.

The packet processing in NFD consists of forwarding
pipelines. A forwarding pipeline (or just pipeline) is a
series of steps that operates on a packet or a PIT entry,
which is triggered by the specific event: reception of the
Interest, detecting that the received Interest was looped,



4

when an Interest is ready to be forwarded out of the
Face, etc. A forwarding strategy (or just strategy) is
a decision maker about Interest forwarding, which is
attached at the end or beginning of the pipelines. In other
words, the strategy makes decisions whether, when, and
where to forward an Interest, while the pipelines supply
the strategy the Interests and supporting information
to make these decisions. Because of the fundamental
differences in the processing of Interest and Data packets
in NDN (i.e., the one serves as a request, while other
satisfies pending requests), forwarding pipelines of NFD
are separated into Interest processing path and Data
processing path. The concepts of forwarding pipeline
and forwarding strategy are described in detail below.

Many aspects of NFD are configurable through a
configuration file. Currently, NFD defines 6 top level
configuration sections:

• General: The general section defines various param-
eters affecting the overall behavior of NFD.

• Tables: The tables section is designated for con-
figuration of NFD tables: Content Store, PIT, FIB,
Strategy Choice, and Measurements.

• Log: The log section defines the logger configura-
tion.

• Face system: The face system section fully controls
allowed face protocols, channels and channel cre-
ation parameters, and enabling multicast faces.

• Authorizations: The authorizations section provides
a fine-grained control for management operations.

• Rib: The rib section controls behavior and security
parameters for NFD RIB manager.

2.3.2 Challenges of NFD integration
Towards this integration, we had to address the follow-
ing challenges:

• We had to enable the use of simulation time in NFD.
Therefore, we took advantage of the CustomClock
class provided by the ndn-cxx library in order to
convert ndnSIM time to system clock::time point
and steady clock::time point.

• The scheduler of NFD was redirected to
ns3::Simulator, so that NFD can schedule events
that will be executed by the simulator.

• To optimize the signing process used by NFD for
the interaction with its managers through its man-
agement protocol, we designed a custom keychain
that provides high performance (i.e., minor crypto
overhead) during the simulation. However, for sim-
ulations that need real crypto operations, the use of
a full-featured keychain structure can be selected in
the simulation scenario.

• The forwarding pipeline of NFD had to be ex-
tended with the beforeSatisfyInterest and beforeEx-
pirePendingInterest signals, so that the tracing of
the SatisfiedInterests and TimedOutInterests events
is enabled to the simulator.

• We enabled the configurability of NFD parameters
internally using specially designed configuration

Create Signed 
Interest

 for /localhost/fib/

FIB Helper
AddRoute

Sign
using 

DummyKeyChain

Forward to 
NFD’s FIB 
manager

RemoveRoute

Fig. 2: Operations of the FIB helper

files to avoid the overhead of parsing raw external
files and thus optimize the simulation process.

2.3.3 Face abstraction
It is similar to the corresponding abstraction of the
previous ndnSIM version. However, in this release, an
updated implementation of the Face abstraction is used
(i.e., nfd::Face), which contains the required low-level
communication primitives to handle Interest and Data
packets. As mentioned in [7], these primitives include
functions to send an Interest/Data packet and terminate
the communication on a Face.

2.3.4 NFD’s Content Store
In the NDN communication model, Content Store of-
fers in-network caching for Data packets. Arriving Data
packets are placed in the cache as long as possible, so
that to satisfy future Interests that would request the
same Data. In this way, the protocol performance is
enhanced making NDN robust against packet losses and
errors and capable of inherent multi-casting.

As with many other forwarding components, this
version of ndnSIM uses content store implementation
from the NFD codebase. This implementation takes full
consideration of Interest selectors, however is not yet
flexible when it comes to cache replacement policies.
The feature to extend CS flexibility is currently in active
development and, for the time being, we have also
ported the old ndnSIM 1.0 content store to the new code
base, which is discussed in 2.6.

2.3.5 Pending Interest Table (PIT)
In our implementation, the class nfd::Pit of NFD is used
as the PIT abstraction. PIT maintains the state for the
Interest packets that have been forwarded upstream to-
ward one (or more) potential data source(s) of matching
Data. It provides directions for the reverse forwarding
of the Data packets toward the data consumer(s). In
addition to that, PIT also contains recently satisfied
Interest packets for the purposes of loop prevention.

For more information about the PIT structure and the
operations performed on it, one can refer to [7].

2.3.6 Forwarding Information Base (FIB)
The class nfd::Fib of NFD is used as the FIB abstrac-
tion.This abstraction is used by the forwarding strate-
gies for Interest forwarding toward potential content
source(s). For each Interest that needs to be forwarded,
a longest prefix match lookup is performed on the FIB.



5

1	
  

Incoming	
  
Interest	
  

Incoming	
  
Data	
  

Outgoing	
  
Interest	
  

Outgoing	
  
Data	
  

Interest	
  
reject	
  

Interest	
  
unsa2sfied	
  

Interest	
  
loop	
  

Data	
  
unsolicited	
  

Faces	
   Faces	
  Timer	
  

A9er	
  receive	
  
Interest	
  

Before	
  sa2sfy	
  
Interest	
  

Before	
  expire	
  
Interest	
  

Strategy	
  callbacks	
  

Strategy	
  callback	
  

Fig. 3: Overview of ndnSIM/NFD forwarding pipeline

The FIB is updated only through the FIB management
protocol, which is operated on the NDN forwarder side
by the FIB manager. To simplify common operations,
we created a FIB helper that, for the high-level FIB
operations, prepares special signed Interest commands
and sends them towards the FIB manager. Currently,
the FIB helper implements two high-level operations
(Figure 2):

• AddRoute: Create a new FIB entry, add a route to
the FIB entry, or update the cost of the existing
record in the FIB entry.

• RemoveRoute: Remove a route record from the FIB
entry (a FIB entry with empty NextHop records will
be automatically deleted).

The Interest commands sent to the FIB manager are
signed using the custom key chain mentioned in pre-
vious section, which is specially designed to eliminate
signing crypto overhead for simulation purposes. If nec-
essary, the full featured crypto support can be re-enabled
by switching to the standard KeyChain provided by the
ndn-cxx library.

2.3.7 Forwarding Strategy abstraction
As mentioned before, the forwarding strategy abstrac-
tion of NFD makes the decisions regarding the Interest
forwarding. That is to say, whether an Interest would
be forwarded or not, the upstream face(s), where it
would be forwarded, and when it would be forwarded to
the selected upstream face(s). ndnSIM/NFD features an
abstract interface (strategy API) that provides the basic
implementation of the forwarding strategies without the
need of re-implementing the full Interest processing
pipeline. An overview of the forwarding pipeline is
presented in Figure 3 and is described in detail in the
rest of this section.

The implemented forwarding pipeline allow per-
namespace selection of a specific forwarding strategy.
This per-namespace forwarding strategy is registered
and maintained at the Strategy Choice table. The Strat-
egy Choice table is updated through the management
protocol, operated by the Strategy Choice manager. Sim-
ilarly to FIB operations, we created a Strategy Choice
helper that prepares and sends special signed Interest
commands to the manager when strategy selection is
requested in the simulation scenario.

The following built-in forwarding strategies are cur-
rently available:

• Broadcast: Forwards every Interest to all upstream
faces.

• Client Control Strategy: Allows a local consumer
application to choose the outgoing face of each sent
Interest packet.

• Best Route: Forwards an Interest packet to the
upstream face with the lowest routing cost.

• NCC: Re-implementation of the CCNx 0.7.2 default
strategy.

A new forwarding strategy can implement a com-
pletely custom processing or override specific actions
in the existing forwarding strategy. The initial step in
creating a new strategy is to create a class, say MyS-
trategy that is derived from the nfd::Strategy class. This
subclass must at least override the triggers that are
marked as pure virtual and implement them with the
desired strategy logic. It may also override any other
available triggers that are marked as just virtual.

If the strategy needs to store information, it is needed
to decide whether the information is related to a names-
pace or an Interest. Information related to a names-
pace but not specific to an Interest should be stored in
Measurements entries; information related to an Interest



6

Create Signed Interest
 for /localhost/nfd/

strategy-choice

StrategyChoice 
Helper

Install
Sign

using DummyKeyChain

Forward to NFD’s 
StrategyChoice 

manager
InstallAll Install the helper 

in each specified node

send
command

Fig. 4: Operations of the StrategyChoice helper

should be stored in PIT entries, PIT downstream records,
or PIT upstream records. After this decision is made, a
data structure derived from StrategyInfo class needs to
be declared. In the existing implementation, such data
structures are declared as nested classes as it provides
natural grouping and scope protection of the strategy-
specific entity, but it is not required to follow the same
model. If timers are needed, EventId fields need to be
added to such data structure(s).

The final step is to implement at least the “After
Receive Interest” trigger and any (or none) of the three
other triggers listed below:

• After Receive Interest: When an Interest is received,
passes necessary checks, and needs to be forwarded,
the Incoming Interest pipeline invokes this trigger
with the PIT entry, incoming Interest packet, and
FIB entry.

• Before Satisfy Interest: When a PIT entry is satis-
fied, before Data is sent to downstream faces (if any),
the Incoming Data pipeline invokes this trigger with
the PIT entry, the Data packet, and its incoming face.

• Before Expire Interest: When a PIT entry expires
because it has not been satisfied before all in-
records expire, before it is deleted, Interest Unsatis-
fied pipeline invokes this trigger with the PIT entry.

Actions are the forwarding decisions made by each
forwarding strategy and are implemented as non-virtual
protected methods of the nfd::Strategy class. The pro-
vided actions are listed below:

• Send Interest: It triggers when entering the Outgo-
ing Interest pipeline.

• Reject Pending Interest: It triggers when entering
the Interest reject pipeline.

To simplify the operations of specifying the desired
per-name prefix forwarding strategy for one, more or
all the topology nodes, we provide a Strategy Choice
helper that interacts with the Strategy Choice manager
of NFD by sending special signed Interest commands to
the manager. The operations of this helper are illustrated
in Figure 4

2.4 Application Face
This class enables the communication of the simulated
applications with the NDN network. Specifically, this
abstraction provides functions for sending interests and
data packets as well as overloads of the sendInterest
and sendData methods to receive packets from the NDN
stack. We should note that the wording ”send” refers to
packets that are sent from the NDN stack and thus are
received from the application.

2.5 Network Device Face
This component enables the communication between the
simulated nodes. Each ndn::NetDeviceFace instance is
permanently associated with a NetDevice object and this
object cannot be changed for the lifetime of this face.
For sending packets between simulated nodes, Interest
and Data packets are converted into the NDN packet
format, using routines of the ndn-cxx library, and then
are encapsulated to a packet instance of NS-3.

2.6 ”Old” Content Store
As mentioned above, because of the fact that NFD’s
Content Store is not yet flexible when it comes to
cache replacement policies, we have also ported the
old ndnSIM 1.0 content store implementations to the
new code base (Table 2). These implementations feature
different cache replacement policies, but have limited
support for Interest selectors.

TABLE 2: “Old” Content Store Implementations

Simple content stores
cs::Lru Least recently used (LRU) (default)
cs::Fifo First-in-first-Out (FIFO)
cs::Lfu Least frequently used (LFU)
cs::Random Random
cs::Nocache Policy that completely disables caching
Content stores with entry lifetime tracking
These policies allow the evaluation of CS enties lifetime (i.e., how
long entries stay in CS)
cs::Stats::Lru Least recently used (LRU)
cs::Stats::Fifo Least frequently used (LFU)
cs::Stats::Lfu Random
cs::Stats::Random Policy that completely disables caching
Content stores respecting freshness field of Data packets
These policies cache Data packets only for the time indicated by
FreshnessPeriod.
cs::Freshness::Lru Least recently used (LRU)
cs::Freshness::Fifo Least frequently used (LFU)
cs::Freshness::Lfu Random
cs::Freshness::Random Policy that completely disables caching
Content store realization that probabilistically accepts data
packet into CS (placement policy)
These policies cache Data packets only for the time indicated by
FreshnessPeriod.
cs::Probability::Lru Least recently used (LRU)
cs::Probability::Fifo Least frequently used (LFU)
cs::Probability::Lfu Random
cs::Probability::Random Policy that completely disables caching

2.7 Basic NDN applications
The basic applications included in the current ndnSIM
release are the same applications that have been included
in its previous release with minor changes due to the
introduction of the ndn-cxx library:

• ConsumerCbr: a consumer application that gener-
ates Interest traffic according to a user-defined pat-
tern (e.g., predefined frequency, constant rate, con-
stant average rate with inter-Interest gap distributed
uniformly at random, exponentially at random, etc.).
A user-defined Interest name prefix and sequence
number are available. Moreover, this application



7

provides Interest retransmission according to an
RTT-based timeout period similar to the TCP RTO.

• ConsumerBatches: a consumer application that gen-
erates a specified number of Interest packets at
specified time points of the simulation.

• ConsumerWindow: a consumer application that
generates Interest traffic of variable rate. It imple-
ments a simple sliding-window-based Interest gen-
eration mechanism.

• ConsumerZipfMandelbrot: a consumer application
that requests contents (i.e., names in the requests)
following the Zipf-Mandelbrot distribution.

• Producer: a simple application that sinks Interest
traffic and generates Data traffic. Specifically, it re-
sponds to each incoming Interest packet with a Data
packet that has the same size and name as the
corresponding incoming Interest packet.

The interaction of the applications with the core of
the simulator is achieved using the ndn::AppFace re-
alization of the nfd::Face abstraction. The base class
ndn::App is responsible for the creation/deletion of the
ndn::AppFace instances and their registration in the
protocol stack.

2.8 Trace helpers
The trace helpers simplify the collection and aggregation
of various necessary statistical information about the
simulation and write this information in text files. In our
implementation, the capability of tracing events directly
from NFD has been added to the tracers. There are three
sorts of such helpers:

• Packet-level trace helpers: This group includes
L3RateTracer and L2Tracer. The former traces the
rate in bytes and in number of packets of Inter-
est/Data packets forwarded by an NDN node, while
the latter traces only packets that are dropped on
layer 2 (e.g., due to a transmission queue overflow).

• Content store trace helper: With the use of CsTracer,
it is possible to obtain statistics of cache hits/misses
on the Content Store of the simulated nodes.

• Application-level trace helper: With the use of
AppDelayTracer, it is possible to obtain data re-
garding delays between issuing Interest packets and
receiving the corresponding Data packet.

3 LIMITATIONS OF CURRENT VERSION AND
FUTURE PLAN

Our ultimate goal for the simulator is to provide an API,
which will be used by researchers in order to port and
simulate any real NDN application in a convenient and
handy way. However, this feature is not still available.
In order to accomplish this goal the ApiFace has to
be replaced with the emulation of ndn-cxx ndn::Face,
which is used by real NDN applications. In addition
to that, ndnSIM 2.0 does not support the use of NFD’s
RIB manager. This is also one of the features that we

are planning to provide in the near future. The pro-
vided FibHelper also does not implement some function
for route removal from the FIB of NFD, but only for
route creation/update, which is something that we are
planning to support in the near future. Last but not
least, the TcpFace and UpdFace provided by the previous
simulator version have been temporarily disabled, but
we are planning to enable them soon.

4 RELATED WORK
Within the recent years, the interest for NDN research
has grown. As a consequence, the development of com-
mon and handy ways for the evaluation of the proposed
NDN research approaches has been absolutely necessary.

One of the first and popular approaches towards that
goal is the previous version of ndnSIM [6]. This version,
exactly like the current one, is implemented in a mod-
ular way and was optimized for simulation purposes.
However, the previous version included an independent
implementation of NDN packet forwarding and used a
deprecated NDN packet format. Moreover, the ndnSIM
1.0 never implemented the full-featured processing of
NDN selectors and, as a result, has limitations regarding
the accuracy of the simulation results.

Another existing effort is presented by Chioccheti et
al. [10, 11]. ccnSim is a scalable chunk-level simulator
suitable for the analysis of caching performance of NDN
networks. It is developed using the OMNeT++ frame-
work in C++. However, it is mainly optimized for the
experimentation on various cache replacement policies
for NDN routers and does not provide any flexibility of
the forwarding process. As a result, ccnSim cannot be
used for the experimentation on a vital core component
of the NDN architecture, which is the forwarding strat-
egy layer.

CCN-lite [12] is a lightweight implementation of the
CCNx-NDNx protocol. It offers a simulation mode using
the OMNeT++ simulation platform. CCN-lite supports
scheduling, both at chunk and at packet level, and
packet fragmentation. It also supports possible native
deployment without any IP layer. However, this effort is
mainly intended to run on resource constrained devices
and is not optimized to offer high performance as its
data structures rely on linked lists.

The Content Centric Networking Packet Level Simu-
lator (CCNPL-Sim) [13] is another NDN simulator de-
veloped at Orange Labs. CCNPL-Sim makes use of the
Combined Broadcast and Content-Based routing scheme
(CBCB) [14] implementation within the SSim simulator
to handle event management and name based forward-
ing and routing. Despite the effectiveness of the SSim
simulation scheduler, the mandatory usage of CCNB
makes the evaluation of other routing protocols, such
as OSPFN [15] and NLSR [16], impossible thus limiting
the experimental scope of this simulator.

Another recently introduced effort is Mini-CCNx [17].
Mini-CCNx is a fork of Mininet-HiFi specially cus-
tomized to support the emulation of CCNx-NDNx



8

nodes. Its main goal is to add a realistic behavior to
the executed tests. Mini-CCNx offers flexibility, because
of the Container-Based Emulation features of Mininet,
and a simple configuration GUI interface. However, it
is based on the packet format of NDNx, which is an
outdated version of the NDN communication model. It
also mainly focuses on emulating the node hardware
instead of the communication model itself.

The affluence of computing resources across the ex-
isting research network testbeds/infrastructures (e.g.,
GENI [18], Open Network Lab (ONL) [19], Emulab [20],
etc.) also offers a valuable option for the conduction of
real-time research experiments. These testbeds provide
both the hardware and the software systems needed
by researchers to evaluate their design. However, the
complexity that is introduced in order to configure and
manage all the delegated resources along with the lim-
ited experimental scale are two crucial reasons that lead
researchers to resort to simulations.

5 SUMMARY

In this release of the simulator, we have focused our
efforts on providing a more realistic simulation behavior
by integrating the Named Data Networking Forwarding
Daemon (NFD) with ndnSIM and using directly the ndn-
cxx library and the latest NDN packet format. ndnSIM
provides the framework for large-scale experimentation,
while its modular design offers the flexibility to the re-
searchers to modify its components with minimal, if any,
changes to other parts of its implementation. Detailed
information about the current release and additional
documentation is available on the ndnSIM webstite:
http://ndnsim.net.

We really hope that the NDN community will find
ndnSIM a valuable tool and we are looking forward to
receiving the community’s priceless feedback in order to
further improve the simulator.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard, “Network-
ing named content,” in Proceedings of ACM CoNEXT,
2009.

[2] L. Zhang et al., “Named data networking (NDN)
project 2010 - 2011 progress summary,” PARC,
http://www.named-data.net/ndn-ar2011.html,
Tech. Rep., November 2011.

[3] L. Zhang et al., “Named data networking (NDN)
project,” PARC, Tech. Rep. NDN-0001, October
2010.

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,
K. Claffy, P. Crowley, C. Papadopoulos, L. Wang,
and B. Zhang, “Named data networking,” ACM

SIGCOMM Computer Communication Review, July
2014.

[5] (2012, May) ns-3. [Online]. Available: http://www.
nsnam.org/

[6] A. Afanasyev, I. Moiseenko, and L. Zhang,
“ndnSIM: NDN simulator for NS-3,” NDN,
Technical Report NDN-0005, October 2012. [Online].
Available: http://named-data.net/techreports.html

[7] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moi-
seenko, Y. Yu, W. Shang, Y. Huang, J. P. Abraham,
S. DiBenedetto, C. Fan, C. Papadopoulos, D. Pe-
savento, G. Grassi, G. Pau, H. Zhang, T. Song,
H. Yuan, H. B. Abraham, P. Crowley, S. O. Amin,
V. Lehman, , and L. Wang, “NFD developers guide,”
NDN Project, Tech. Rep. NDN-0021, July 2014.

[8] NDN Project, “NFD - named data networking for-
warding daemon,” Online: http://named-data.net/
doc/NFD/0.2.0/, 2014.

[9] ——, “NDN Packet Format Specification,” Online:
http://named-data.net/doc/ndn-tlv/, 2014.

[10] D. Rossi, G. Rossini, “Caching performance of con-
tent centric networksunder multi-path routing (and
more),” Telecom ParisTech, Tech. Rep., 2011.

[11] G. Rossini and D. Rossi, “ccnSim: an highly scalable
CCN simulator,” in IEEE ICC, 2013.

[12] C. Scherb, M. Sifalakis, and C. Tschudin, “CCN-
lite,” Available: http://www.ccn-lite.net, 2013.

[13] L. Muscariello. (2011) Content centric net-
working packet level simulator. Orange Labs.
[Online]. Available: http://perso.rd.francetelecom.
fr/muscariello/sim.html

[14] A. Carzaniga, M.J. Rutherford, and A.L. Wolf, Ed., A
Routing Scheme for Content-Based Networking. IEEE
INFOCOM, March 2004.

[15] L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang,
“OSPFN: An OSPF based routing protocol for
Named Data Networking,” NDN, Tech. Rep NDN-
0003, 2012.

[16] NDN Project, “NLSR - Named Data Link State
Routing Protocol,” Online: http://named-data.net/
doc/NLSR/0.1.0/, 2014.

[17] C. Cabral, C. E. Rothenberg, and M. F. Magalhães,
“Reproducing real NDN experiments using mini-
CCNx,” in Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking, 2013.

[18] (2015, January) GENI (Global Environment for
Network Innovations). [Online]. Available: http:
//www.geni.net

[19] (2015, January) Open Networking Lab. [Online].
Available: http://onlab.us

[20] (2015, January) Emulab - Network Emulation
Testbed. [Online]. Available: http://www.emulab.
net

http://ndnsim.net
http://www.nsnam.org/
http://www.nsnam.org/
http://named-data.net/techreports.html
http://named-data.net/doc/NFD/0.2.0/
http://named-data.net/doc/NFD/0.2.0/
http://named-data.net/doc/ndn-tlv/
http://www.ccn-lite.net
http://perso.rd.francetelecom.fr/muscariello/sim.html
http://perso.rd.francetelecom.fr/muscariello/sim.html
http://named-data.net/doc/NLSR/0.1.0/
http://named-data.net/doc/NLSR/0.1.0/
http://www.geni.net
http://www.geni.net
http://onlab.us
http://www.emulab.net
http://www.emulab.net

	Introduction
	Design
	Design summary
	Core NDN protocol
	Named Data Networking Forwarding Daemon
	NFD Internal Structure
	Challenges of NFD integration
	Face abstraction
	NFD's Content Store
	Pending Interest Table (PIT)
	Forwarding Information Base (FIB)
	Forwarding Strategy abstraction

	Application Face
	Network Device Face
	"Old" Content Store
	Basic NDN applications
	Trace helpers

	Limitations of current version and future plan
	Related Work
	Summary

