
Scalable NDN Forwarding: Concepts, Issues and
Principles

Haowei Yuan
Computer Science and Engineering

Washington University
St. Louis, Missouri 63130
Email: hyuan@wustl.edu

Tian Song
School of Computer Science

Beijing Institute of Technology
Beijing, China 100081

Email: songtian@bit.edu.cn

Patrick Crowley
Computer Science and Engineering

Washington University
St. Louis, Missouri 63130

Email: pcrowley@wustl.edu

Abstract—Named Data Networking (NDN) is a recently pro-
posed general-purpose network architecture that leverages the
strengths of Internet architecture while aiming to address its
weaknesses. NDN names packets rather than end-hosts, and most
of NDN’s characteristics are a consequence of this fact. In this
paper, we focus on the packet forwarding model of NDN. Each
packet has a unique name which is used to make forwarding
decisions in the network. NDN forwarding differs substantially
from that in IP; namely, NDN forwards based on variable-length
names and has a read-write data plane. Designing and evaluating
a scalable NDN forwarding node architecture is a major effort
within the overall NDN research agenda. In this paper, we present
the concepts, issues and principles of scalable NDN forwarding
plane design. The essential function of NDN forwarding plane
is fast name lookup. By studying the performance of the NDN
reference implementation, known as CCNx, and simplifying its
forwarding structure, we identify three key issues in the design of
a scalable NDN forwarding plane: 1) exact string matching with
fast updates, 2) longest prefix matching for variable-length and
unbounded names and 3) large-scale flow maintenance. We also
present five forwarding plane design principles for achieving 1
Gbps throughput in software implementation and 10 Gbps with
hardware acceleration.

Index Terms—Named Data Networking, Forwarding Plane,
Longest Prefix Match

I. I NTRODUCTION

Named Data Networking(NDN) [1] is a recently proposed
network architecture that supports efficient content distribution
intrinsically. NDN takes the content-centric approach [2],
focusing on what the content is rather than where the content
is. Each NDN packet has a unique name. Since there are
no source and destination addresses in an NDN packet, it
is forwarded based on a lookup of its name. There are two
types of packets in NDN networks,Interestpackets andData
packets. To fetch content, a host sends an Interest packet,
which contains the name of the requested content. A Data
packet, which contains both the content and its name, will be
returned if the requested content is available. NDN nodes are
capable of caching Data packets, and the caching component is
calledContent Store (CS). Large files can be chunked and thus
transferred and cached at granularities smaller than the sizes
of files and data objects. When an Interest packet arrives at an

Dr. Tian Song is involved in this work when he is a visiting scholar at
Washington University in St. Louis.

NDN node, if the requested content is cached, the Data packet
can be returned directly from the node. If the name is not in the
cache, the node records the content name and the arrival inter-
face in thePending Interest Table (PIT), and then forwards the
Interest packet via an interface identified by a name lookup in
theForwarding Information Base (FIB), which contains NDN
route entries. Storing pending interests in this way demands
that the forwarding plane for NDN support both fast table
lookups and fast table insertions and updates. IP, by contrast,
has a read-only data plane. (IP payloads are both read and
written, of course, but they do not require lookups and are not
a challenge in high-speed data planes as a result.) NDN routes
are managed hierarchically, as are IP routes. However, rather
than address prefixes, NDN routes are identified by name
prefixes. Overall, we expect that NDN route tables will be
much larger than IP route tables, because names are longer and
more numerous. In fact, NDN packet names have hierarchical
structures similar to HTTP URLs, and each name consists of
multiple name component. For instance, an NDN packet name
may look like ndn://wustl.edu/web/research, where wustl.edu,
web, research are the name components.

An NDN software prototype, CCNx [3], has been devel-
oped by PARC. The key component of CCNx is theccnd
daemon, which implements the packet forwarding plane. The
current CCNx program operates on several operating systems,
including Windows, Mac OS, Linux and Android and runs
as an overlay on IP networks. It should be noted that NDN
does not require IP architecturally, although it does require
it pragmatically since IP provides global connectivity. To
emphasize the point, we observe that it is possible to build
an IP network as an overlay on top of NDN.

A scalable forwarding plane is the key for deploying NDN
in a large scale, demonstrating its real-world feasibility. In
this paper, we first present the core concepts of the NDN
forwarding plane, and then explain the challenges of satisfying
its scalability requirements. By analyzing and simplifying
CCNx data structures and overall organization, we can identify
the key issues in scalable forwarding. To conclude, we discuss
the principles of designing and implementing such a system,
which is the focus of our ongoing work.

The NDN forwarding plane needs to support fast packet
name lookup, intelligent forwarding strategies and effective



cache replacement policies [1]. In this paper, we focus on
fast packet name lookup in particular since name-lookup rates
directly impact the scalability of the forwarding plane. Our
measurements show that the peak throughput of the CCNx
implementation is much lower than the1 Gbps link rate
that we consider a minimum requirement. The challenges of
designing a scalable forwarding plane derive primarily from
variable-length names and the read/write nature of packet for-
warding. As a result, efficient algorithms and data structures,
as well as advanced hardware devices, are needed to accelerate
NDN forwarding. Based on NDN forwarding characteristics,
we present several design principles that should generallybe
followed.

It is important to understand the status and practical limits of
the current NDN prototype design in order to guide future re-
search in this field. We note that recent papers have considered
closely related topics, such as general content-centric router
design [4], cost estimates for building content centric networks
[5] and theoretical analyses of the performance of content
centric networking in general [6]. To date, however, there has
been no discussion or investigation of how data structures and
algorithms should be applied to the specific topic of name-
based forwarding, as embodied in the NDN forwarding plane.
In particular, there is no literature on how the current CCNx
software is implemented and how it performs in detail, except
for an initial latency measurement in [7]. We feel the essential
problems in NDN forwarding need to be further clarified and
that a formal description of these challenges will be beneficial
for the broader research community.

In this paper, we make the following contributions.

1) We present an experimental evaluation of the current
CCNx implementation. Our results show that CCNx
needs substantial efficiency gains to achieve sustainable
gigabit performance.

2) We describe the CCNx implementation details relevant
to performance. This is the first such description of the
major data structures and algorithms used in CCNx.

3) We provide a formal definition of the three key prob-
lems in scalable NDN forwarding plane design. We
analyze and simplify the packet forwarding operations
in CCNx and NDN, and identify three major problems:
exact string matching with fast updates, longest prefix
matching for variable-length and unbounded namesand
large-scale flow maintenance.

4) We articulate design principles for scalable NDN for-
warding plane design. Each of these five principles
represents a potential research direction.

The paper is organized as follows. We present the con-
cepts of the NDN forwarding plane in section II. In section
III, CCNx performance measurement and profiling results
are discussed. Section IV presents the organization of NDN
forwarding data structures and operations and key issues in
NDN forwarding. Section V presents five design principles
for achieving 1 Gbps in software and 10 Gbps in hardware.
We conclude the paper in Section VI.

�������� �����


��� �	�����
��

�����

������	�� �����

����������
��������

����

 �����!�

Fig. 1. Layers of the Forwarding Plane in CCNx

II. T HE NDN FORWARDING PLANE

In this section, we first describe in detail the three functions
that are supported by the NDN forwarding plane, and then
present the forwarding plane layers used in the current CCNx
implementation. We point out thatfast name lookupis the
most critical problem for scalable NDN forwarding.

NDN forwarding plane [1] supports fast name lookup,
intelligent forwarding strategies and effective caching policies.
Logically, an NDN forwarding plane consists of aContent
Store, which caches Data packets, aPending Interest Table,
which is used to store pending Interest requests, and aFor-
warding Information Basethat stores forwarding rules.

1) Fast name lookup. Since NDN packets do not have source
and destination addresses like IP packets, an NDN packet is
forwarded by performing a lookup of its content name. NDN
name lookup could happen at PIT, CS and FIB, and it involves
both longest prefix match and exact string match with fast
updates.

2) Intelligent forwarding strategies. In NDN, it is possible
for a packet to have multiple outgoing interfaces. The forward-
ing strategy selects the most efficient interface(s) by making
forwarding decisions not only based on FIB lookup results,
but also considering the network environment.

3) Effective caching policies. The Content Store is the com-
ponent that makes NDN favor content distribution. Effective
caching replacement policies can improve cache-hit rates and
thus further improve content distribution performance.

The NDN forwarding plane decides what to do for each
incoming packet. In practice, the NDN forwarding plane can
be divided into multiple layers based on the functions that
need to be supported. Figure 1 shows the layers CCNx used
to implement its forwarding plane. The strategy layer selects
forwarding strategies and impacts the forwarding decisions.
Packet forwarding, pending Interest management and tempo-
rary content storing are performed in the data forwarding layer.
The data forwarding layer is controlled by the strategy layer.
The transport layer handles network communication and it can
be viewed as an interface to format and transport data using
the IP network.

A scalable NDN forwarding plane, in order to support a 10
Gbps link rate, must process tens of thousands of Interest and
Data packets per second. In addition, to make caching effec-
tive, the number of cached Data packets also should be large,



which subsequently makes the Content Store name lookup
more time consuming. The time spent on name lookup impacts
the maximum data rate. Intelligent forwarding strategies and
effective caching policies improve NDN content distribution
performance but do not directly impact NDN scalability. As
a result,fast name lookup is the key problem in making NDN
forwarding scalable.

III. CCNX PERFORMANCESTUDY

It is important to understand the status of the current NDN
prototype and its practical limits. In this section, we present
our preliminary performance evaluation of CCNx. Our mea-
surement results show that the current CCNx implementation
cannot meet the 1 Gbps link rate requirement. After analyzing
CCNx peak throughput, we classify the problems that slow
down the forwarding performance intoengineeringproblems
andmethodproblems.

Our performance study was conducted in the Open Network
Laboratory (ONL) [9]. ONL is a free and publicly-accessible
network-system testbed and its easy configurability and mon-
itoring infrastructure makes evaluating new network designs
simple. The CCNx implementation evaluated in this work
is ccnx-0.4.0, released on September15, 2011. CCNx was
compiled usinggcc-4.4.1 with optimization level-O4.
The core component,ccnd, is configured with all default
environment variable values. The Content Store size, i.e.,the
number of packets that can be cached on a router, impacts
the overall system performance. This size is set at the de-
fault value of50, 000, determined by the strong relationship
between the CS size and the hard coded garbage collection
time interval. CCNx supports both TCP and UDP, but we
use only TCP in our experiments. We studied the impact of
Data packet payload size on throughputs, the sizes of packets
are 1, 256, 512 and 1024 bytes. To generate CCNx traffic,
the built-in ccncatchunks2and our ccndelphiprograms are
used as the client program and server program, respectively.
The ccncatchunks2program generates a sequence of Interest
packets to fetch a large file. The generated Interest startedwith
the name ccnx:/URI/0, where the last portion is the chunk
index. It fetches the next chunk of the file by increasing the
chunk index. Theccndelphiprogram generates Data packets
with random payloads, and it is designed to send back Data
packets as soon as possible.

CCNx peak throughput is reached when the CPU of the
CCNx router is fully utilized. In general, clients send Interest
packets to the server side via the CCNx router, and then the
server-side machines send back corresponding Data packets
via the CCNx router. To saturate the CCNx router, we use
multiple clients to generate Interest requests, and multiple
servers to generate Data packets. Figure 2 shows the topology
for throughput measurement. Each desktop in the topology
represents a dedicated single-core machine equipped with a
2.0 GHz AMD processor and512 MB of memory. There are
16 servers on top, and16 clients on bottom. The single core
machine in the middle is a CCNx router. Network-Processor

Routers (NPRs) [10], shown as circles in Figure 2, connect
these machines and monitor throughput.

CCNx router throughput is set to include two values,
Outgoing Throughput, denoted asOut, andIncoming Through-
put, denoted asIn. We differentiate outgoing and incoming
throughput because they are not necessarily the same for a
CCNx router, unlike in an IP network where outgoing and
incoming throughputs are always very close, if not the same.
We record bothOut and In of the NPR port connecting to
the CCNx router. These throughput values are sampled every
1 second. For each experimental configuration, we select top
20 throughput values to compute the average peak throughput
and calculate a 90% confidence interval.

Fig. 2. Throughput Measurement Topology

Two experimental configurations were used for measuring
CCNx router peak throughput. In the first case, every client
requests a different file, thus the retrieved Data packets can
not be shared among clients, i.e., having a Content Store does
not bring any benefit. In the second case, all clients request
the same file. As a result, every Data packet is shared by
the clients, and the Content Store brings the highest potential
benefit.

i) No Shared Packet. Figure 2 shows the topology for the
no shared packet case.16 client-server pairs are used for traffic
generation. Every client runs theccncatchunks2program to
send Interest packets. Interests sent by clienti have names
like ccnx:/i/chunk, wherei = 0...15 and the chunk starts with
value0 and increases by1 for each generated Interest request.
Interest packets sent from Clienti will be routed to Serveri,
which runs theccndelphiprogram to reply with Data packets.
Both ccncatchunks2and ccndelphirun until they get killed.
We vary the Data packet payload size, which is configurable in
theccndelphiprogram. Both the data rates (Mbps) and packet
rates (packets per second) are measured, and the measured
throughput results are shown in Figure 3.

According to Figure 3, the outgoing and incoming through-
put are always the same, or very close in terms of data rate and
packet rate. In addition, incoming packet rate is slightly higher
than outgoing packet rate because when the CCNx router is
saturated, some Interest packets cannot be forwarded in time



1 256 512 1024
0

100

200

300

400

500

Data Packet Payload Size (Byte)

T
hr

ou
gh

pu
t (

M
bp

s,
 x

10
0 

P
ps

)

 

 
Out Mbps
In Mbps
Out x100 Pps
In x100 Pps

Fig. 3. No Shared Packet Case: CCNx Peak Throughput vs. Data Packet
Payload Size (90% CI)

and then get dropped by the router. Data rates are the same
because no Data packet is shared among clients, and thus
each packet contributes to incoming and outgoing throughput
only once. Figure 3 shows that as the payload size decreases,
packet rate does not change much, which demonstrates that the
majority of packet processing is done on the packet headers
rather than on payloads. Since packet rates stay the same for
different payload sizes, data rates increase when payload size
increases. Note that even when the payload size is only1 byte,
there is still a high data rate because the throughput monitoring
tool counts the entire packet, which includes both the packet
header and payload.

ii) All Packet Shared. In the second setup, all of the clients
send Interest packets with name ccnx:/0/chunk to the same
server host. Since only a single copy of the duplicated Interest
packet is forwarded by the CCNx router to the server, most
of the Data packets are delivered from the Content Store to
the clients. We started with16 clients and1 server, but the
generated traffic was not enough to saturate the CCNx router.
As a result, we increased the number of clients to32 in this
experiment.

Delivering a single Data packet in this case would result in
32 incoming Interest packets with1 incoming Data packet,
1 outgoing Interest packet and32 outgoing Data packets.
Since Data packets with payloads are larger than Interest
packets, the outgoing data rate should be much higher than
incoming data rate, which is what Figure 4 shows. The packet
rates are relatively the same across different payload sizes,
although we notice that the outgoing packet rate is slightly
higher than incoming packet rate. Recall that the outgoing
traffic is mainly Data packets, while incoming traffic is mainly
Interest packets, which implies that in CCNx Data packets are
processed slightly faster than Interest packets.

Comparing Figure 3 and Figure 4, we notice that the
outgoing data rate in the second case is much higher. This
demonstrates that serving content directly from Content Store
is more efficient and improves system throughput. It is im-

1 256 512 1024
0

100

200

300

400

500

Data Packet Payload Size (Byte)

T
hr

ou
gh

pu
t (

M
bp

s,
 x

10
0 

P
ps

)

 

 
Out Mbps
In Mbps
Out x100 Pps
In x100 Pps

Fig. 4. All Packet Shared Case: CCNx Peak Throughput vs. DataPacket
Payload Size (90% CI)

portant to note that in both cases the peak throughputs of the
current CCNx implementation,150 Mbps for the first case and
350 Mbps for the second case, are far from the 1 Gbps link rate
requirement. In addition, the peak performance studied here
can hardly be achieved in the real world. When the number
of requests is increased, with longer packet names being used
and more complicated forwarding strategy being deployed, the
system throughput will degrade. As a result, identifying the
bottleneck of the CCNx forwarding plane and improving its
performance are critical.

We usedGprof [11] to profile the saturatedccnd daemon.
We profiled the daemon3 times and list the top 10 most time-
consuming functions in Table I. Unexpectedly, more than60%

of the time was taken by functions related to packet name
decoding, and these functions are shown in italic in Table
I. In particular, theccn skeletondecodefunction, which is
the lowest level packet decoding function, takes35.46% of
the entire program running time. Upon further investigation,
it turns out that the original CCNx implementation chooses
to store content in encoded format. Furthermore, theContent
Skip List (CSL), which is an index for the CS, does not
store decoded Data packet names by itself. As a result, when
the CSL is queried, an average oflogn content needs to be
decoded on the fly to get their names, wheren is the number
of content entries stored in CS. In this experiment,n is always
greater than50, 000.

Based on the above analysis, two sets of problems slow
down the CCNx software. The first can be categorized as
engineeringproblems, such as the name decoding scheme. The
other set aremethodproblems. For instance, functions related
to name lookup, such as thehashtb seek function listed in
Table I. Although engineering problems have a great impact,
we recognize that academic research should focus more on the
method problems, which are the main concern in this paper.
Engineering problems are strongly related to design decisions,
while solving method problems is fundamental to achieving
fast name lookup.



TABLE I
TOP 10 TIME-CONSUMING FUNCTIONS

Function Name Percentage(%)
ccn skeletondecode 35.46
ccn comparenames 12.53
ccn buf match dtag 8.95
ccn buf advance 6.64
ccn buf match blob 5.07
ccn buf decoderstart at components 4.94
ccn buf match someblob 3.32
content skiplist findbefore 3.06
ccn buf check close 2.34
hashtbseek 1.36
Other functions 15.7
Sum 100

Name Prefix Hash Table (NPHT)

Pending Interest 

Table (PIT)

Propagating 

Entries (PEs)

Propagating 

Hash Table 

(PHT) Forwarding 

Information Base 

(FIB)

Forwarding Info 

Entries (FIEs)

Content Hash Table (CHT)

Content Skip List (CSL)

Content Store (CS)

Content Array (CA)

Straggler Hash Table (SHT)

Fig. 5. CCNx Data Structures

IV. I SSUES INSCALABLE NDN FORWARDING

In this section, we discuss the critical issues in scalable
NDN forwarding plane design. We first present the data struc-
tures and operational flows employed by CCNx to implement
NDN forwarding functions. To the best of our knowledge, this
is the first time CCNx implementation details are discussed
in the literature. We simplified CCNx data structures and
operational flows so that a simpler design is presented. By
analyzing the operational flows in the simplified design and
comparing it with IP forwarding, we identify three most
critical issues in scalable NDN forwarding, and we present
their formal description.

A. Data Structures and Operational Flows in CCNx

1) Data Structures:Recall that each NDN forwarding node
has three logical components, namely Content Store, Pending
Interest Table and Forwarding Information Base. Figure 5
shows the data structures that implement these three compo-
nents in CCNx.

The logical FIB and PIT share a hash table namedName
Prefix Hash Table (NPHT), which indexes thePropagating
Entries(PEs)andForwarding Info Entries (FIEs). Each bucket
in the NPHT has pointers pointing to PEs and FIEs, where
PEs and FIEs are the structures storing detailed pending
Interest information and forwarding information, respectively.
The Propagating Hash Table (PHT)is keyed by thenonce
field, which is unique for each Interest packet. PHT stores all
the nonce field of the Interest packets presented in PIT (in the
form of PEs). PHT prevents loops in the network, which will
be explained later in the CCNx operational flows.

"#$%&# '

()*+#

,-.,/,,0.-/-12 34353.3- "6789$):9%; '

<)89& =>#$?

34353.3-

=%;:#;: @:%*#

=>#$?

(*#A9B @##?

C;:#*#+:+

=%D+6D9;E

FGHIJK%*L)*&9;E

C;:#*#+:+

MGN FGHIJ

OPQ RSTUN
VTNUW

MOPQ XGIYRZN
[\RF]S VTNUW

MOPQ RIN\^
]IZR\N]GI

_GV[\RWRIZ]`R
UGV[T\]ZGI

ab][X]ZN XGGbH[

OPQ RIN\^
JRXRN]GI

MOPQ XGIYRZN
[\RF]S VTNUW

Oc RIN\^ JRXRNR
`]T MOPQ X]Ib

OPQ RIN\^
]IZR\N]GI

def XGIYRZN
[\RF]S VTNUW

Oc RIN\^
]IZR\N]GI

g]Ib Oc RIN\^
TIJ MOPQ RIN\^

Fig. 6. Operational Flow of Processing Interest Packets

For Content Store, each Data packet is assigned a unique
accession numberwhen it enters the daemon, and the ac-
cession number increases by one for each incoming Data
packet. The cached Data packets are stored in an array named
Content Array (CA)indexed by the accession numbers. Since
the number of the slots in CA is fixed, there is a range of
accession numbers that CA supports. At the very beginning,
it is from 0 to the size of the array. As time passes, old
cached content gets kicked out of the CS, and the starting and
end accession numbers of CA increase, which is similar to a
sliding window. However, there might be some old but popular
Data packet whose accession number is out of the range that
CA supports. These packets are stored in theStraggler Hash
Table (SHT)to save space; otherwise, the Content Array would
need to support a larger range of accession numbers. Two
data structures summarize the Content Store, namelyContent
Hash Table (CHT)and Content Skip List (CSL). The CHT
is a hash table keyed by the Data packet full name. CSL is
a standard implementation of the skip list [8] data structure.
CSL is chosen because it supports content-order lookup [2].

2) Operational Flows: Interest packets and Data packets
are processed differently in NDN. CCNx implements two oper-
ational flows in theccn_process_incoming_interest
andccn_process_incoming_content functions.

i) Interest Packets.Figure 6 shows the operational flow
of processing Interest packets in the CCNx implementation.
When an Interest packet arrives, it is decoded from its binary
wire format and then parsed. The fields of the Interest packets,
such as packet name and other optional fields, are stored in
an internal structure. For instance, the name /a/b/0/1 shown
in Figure 6 is the parsed Interest packet name. The optional
fields are not presented in this figure as they do not affect
the core packet forwarding processing. After that, an exact
string matching is performed on the PHT to ensure this is
not a packet forwarded by this node. The lookup key is the
nonce field of the Interest packet. If there is a match, this
packet has indeed been forwarded by this node before, and it
is still waiting for the corresponding Data packet to return. As
a result, this Interest packet will be discarded.

If this is a new Interest packet, CCNx checks NPHT to make



/a /a/b/0/a/b/0/1 /a/b...

parent parent

parent

...

Fig. 7. NPHT After Processing /a/b/0/1

sure all prefixes of this Interest packet exist in NPHT. We call
this stagePrefix Seek. New entires are inserted if there are
prefixes not stored in the NPHT yet. Figure 7 shows how the
NPHT looks like after the name /a/b/0/1 is processed. Prefixes
are linked byparent pointers for fast name lookup. After the
Prefix Seek stage, the packet name is sent to the Content Store
to check whether a cached content can satisfy this Interest or
not. In Content Store, Content Skip List is queried to find
potential matching content following standard skip-list lookup
procedure. If a potential match is found, the content is pulled
from the CS, and an comprehensive match is performed to
check whether the content indeed satisfies the Interest. This
checking is needed because there are other restrictions in the
Interest packet that do not get represented by packet names,
such as using the exclusion filters to exclude certain content
[1].

If this Data packet is a satisfied match, the Interest packet
will be consumed. Currently, CCNx checks all the prefixes of
the content name to consume as many Interests as possible. In
this case, if the name of the Data packet is /a/b/0/1, the prefixes
/a/b/0, /a/b and /a will all be examined. CCNx checks all the
prefixes because the content /a/b/0/1 may also satisfy /a/b/0
if Interest /a/b/0 makes clear that only the first three name
components are required to be matched. As a result, a single
Data packet may consume many Interest packets, but it also
takes more processing time. We think performing all prefix
checks in the NDN forwarding plane is an open question. If all
prefix check is not a required feature, then Interest consuming
can be reduced to an exact string matching problem, as we will
show in the simplified operational flow design. After finding
all the Interest packets that can be consumed, this Data packet
is sent back to these Interests senders, and the consumed
Interest names are deleted from the NPHT and PHT.

If no Data packet stored in the CS can satisfy this Interest,
the FIB is consulted to find the proper next-hop information
for this packet. CCNx achieves this by performing a longest
prefix finding on the NPHT. It first checks whether there is a
valid FIE for the longest prefix, i.e., the full packet name. Then
the rest of the prefixes can be retrieved in length-decreasing
order by following the parent pointers. The process stops when
a valid PE is found or the root prefix is reached. When this
packet is forwarded, a Propagating Entry containing the entire
Interest message is constructed and then linked to the NPHT
bucket that stores the full name of this packet. Then the nonce
field of this Interest packet is inserted into the PHT.

ii) Data Packets.The operational flow of processing Data
packets in the CCNx implementation is shown in Figure 8.
When a Data packet arrives, just as with Interest packets, this

hijkli m

nopqi

rstrurrvtsuswx yz{z |k}~i}~ �~kpi

�ii�� �o��}�

yz{z �}~ipiq~q

|k}q���}�

����� ����� ��
���

���� �������
������ �����

���� � ������
���������

��� ����¡
¢�������

�� ����¡ ¢�����
£�� ���� ��� 

Fig. 8. Operational Flow for Handling Data Packets

¤¥¦§ ¦¨©ª«¬­

®¯°±²±³°

´µ¶ ¦¨©ª«¬­ ¥µ§ ¦¨©ª«¬­

·¸¹º»¼ º»½¾»½¿ À¼ÁÂÃ

®¯°±²±³°

´µ¶ ¦¨©ª«¬­ ¥µ§ ¦¨©ª«¬­

ÄÅ½¿¹ÆÃ Ç¸¹º»¼
ÈÁÃÂÉ»½¿ À¼ÁÂÃ

ÊÊËÌ
ÍÎÏÐÑÎÑÒÓÔÓÍÕÒ

ÊÕÒÖÑÏÓ
×ÍÑØ

Fig. 9. CCNX Implementation vs. Concept View of NDN Forwarding Plane

Data packet is decoded and parsed first. After that, an exact
string matching on CHT is performed to make sure that this
packet has not been stored in the CS before, and that the
lookup key is the full name of the Data packet. If this packet
is not duplicated, its name is inserted to the CHT and CSL,
and the content is stored in CS. Then this Data packet will
try to consume as many Interests as possible, as we have just
described.

B. Simplified Data Structures and Operational Flows

CCNx is a prototype NDN forwarding node, and some of its
implementation decisions are not required by NDN. Figure 9
shows the CCNx implementation model and a conceptual view
of the NDN forwarding plane. As Figure 9 shows, NPHT is
used as an intermediate data structure to store prefixes for FIB
and PIT in CCNx. As a result, the longest prefix match on FIB
is converted to an exact string match in the NPHT. Sharing
the NPHT between FIB and PIT is a software optimization
since the memory utilization is reduced. It should be noted
that supporting longest prefix matching in FIB and exact string
matching in PIT would be able to realize core NDN forwarding
functions.

As a result, the operational flows can be simplified as
shown in Figure 10 for Interest packets and Figure 11 for

ÙÚÛÜÝÚ Þ

ßàáâÚ

ãäåãæããçåäæäèé êëêìêåêä ÙíîïðÛàñðÜò Þ

óàïðÝ ôõÚÛö

êëêìêåêä ôÜòñÚòñ ÷ñÜáÚ

ôõÚÛö

øòñÚáÚâñâ

ôÜùâíùðòú

ûüýþÿ
�Üá�àáÝðòú

øòñÚáÚâñâ

�ü� ûüýþÿ

	�� ����� 
����

� �þ��
��üþ
����� 
����

	�� ÿ�����üþ
��� �üþ����
�
�û�� 
����

Fig. 10. Simplified Operational Flow for Handling Interest Packets



������ �

��� �

!"#!$!!%#"$"&' ()*) +�,-�,- .-���

.��/ � .�01,2

()*) 3,-��� - 

+�, 451,2

6789: ;8:9< =

>?@AB:>C?

DEF A789: ;8:9<

= GAHA:>C?

Fig. 11. Simplified Operational Flow for Handling Data Packets

TABLE II
PACKET FORWARDING IN IP AND NDN

IP NDN
Forwarding Key IP address Content name
Key length 32 bits Variable
Forwarding rules Longest prefix match Longest prefix match
Per-packet READ Yes Yes
Per-packet WRITE No Yes

Data packets, respectively. For each incoming Interest, the
forwarding plane first checks duplication and prevents loop
using exact string matching in PIT, and then find possible
contents from the Content Store. If no content is found, a
longest prefix match is performed on FIB to locate forwarding
information and then the Interest is forwarded. If content
is found, the Interest is consumed by deleting the entry in
PIT. Basically, the conceptual flow is the same as the one in
CCNx shown in Figure 6, except that we remove the NPHT
data structure. Each incoming Data packet is stored in CS by
performing an exact match and, the corresponding Interest is
consumed. It is easier to understand the operational flow when
NPHT is removed.

The simplified operational flows cover the core NDN for-
warding functions. Based on this simplified operational flows,
efficient data structures and algorithms can be designed to
optimize the forwarding performance. In particular, simplicity
and less interactive flows are important for pipelined-based
architectures in hardware design.

C. Key Issues to Be Solved

Comparing with IP forwarding, NDN forwarding is com-
plicated and more challenging. Table II lists the differences
between IP packet forwarding and NDN packet forwarding.
Our ultimate goal is to achieve a 1 Gbps forwarding rate in
software implementation and 10 Gbps with hardware acceler-
ation. To achieve that, we identify three critical issues tobe
solved in NDN forwarding. We present these three issues in
the order of importance.

1) Exact string matching with fast updates:In exact string
matching with fast updates, there is a lookup keyk and a set
of strings stored inSet. The problem is to verify whetherk
is in Set, and then perform operations such as insert, delete
or update values inSet. In the NDN forwarding plane, exact
string matching with fast updates is performed in PIT lookups
or Content Store lookups. A PIT lookup inserts a new Interest
packet or updates an existing Interest packet, or deletes a
consumed Interest packet. For a Data packet, a Content Store
lookup results in inserting this Data packet into the CS or
updating the expiration time of a stored Data packet. In the
worst case, every packet requires an update. This problem

can be treated as membership verification and anchored multi-
string matching.

Although high-speed exact string matching has been heavily
studied in the fields of network intrusion detection [12] [13]
and content filtering [14] [15], existing methods can not be
readily applied in NDN. To the best of our knowledge, none
of the aforementioned studies can support updating on a per-
packet basis.

2) Longest prefix matching for variable-length and un-
bounded names:In longest prefix matching (LPM), there is
also a lookup keyk and a set of stringsSet. The problem is to
find a strings from Setsuch thats is the longest prefix ofk
among all the strings inSet. Longest prefix match is performed
in FIB lookups. Since generally the forwarding rules are not
updated very fast, the implementation of LPM should mainly
focus on fast lookup on variable-length and unbounded names.

LPM has been heavily studied for IP lookup and URL
filtering [16] [17] [18]. Although NDN longest prefix match
is the same as IP longest prefix match in principle, existing
methods for IP lookup do not support NDN well. NDN packets
have variable-length and unbounded names, unlike IP packets,
which have fixed 32-bit addresses as the lookup keys. Most
of the proposed IP LPM solutions are slower or require larger
memory storage for longer lookup keys.

3) Large-scale flow maintenance:Flow maintenance is
another way of implementing the Pending Interest Table.
We identify large-scale flow maintenance as an independent
problem since in hardware solutions, it is not efficient to allo-
cate PIT entries dynamically or using pointers in the design.
Alternatively, the hardware solutions can choose to maintain
the pairs{name, incoming interfaceID, outgoing interfaceID}
in the forwarding plane. We name this pairndn-status. Flow
maintenance is similar to IP network per-flow monitoring.
However, NDN packets have variable-length names to process,
not fixed length five-tuples. In addition, since the number of
content names is unlimited, the flow table can be extremely
large, which also makes its maintenance challenging.

V. DESIGN PRINCIPLES

For large-scale NDN deployments, our minimum acceptable
targets are to achieve 1 Gbps forwarding performance with
a software implementation and 10 Gbps with hardware. To
solve the above issues efficiently, we offer design principles
and identify potential opportunities for optimization.

A. Aim for Constant-Time Operations

The goal of fast name lookup is to achieve constant lookup
time for variable-length names. Since names have unbounded
length, this goal may be, in principle, unachievable. In prac-
tice, however, most names are likely to fit within one Interest
packet.

In NDN forwarding, a longer name requires greater pro-
cessing time. We measured the impact of the number of
components in packet names on CCNx router performance
and verified this behavior experimentally. The experimental
setup was the same as in Section III, with the system topology



shown in Figure 2. We set the Data packet payload size to1024

bytes. This experiment differed from the first case of Section
III in that the requested names were longer. Clienti sends out
Interest packets with names ccnx:/i/i.., wherei = 0...15 and the
number of the name components is varied in each experiment
configuration. In this way, we vary the number of components
in packet names; the measured performance results are shown
in Figure 12.

2 4 8 16 32
0

50

100

150

200

Number of Components

T
hr

ou
gh

pu
t (

M
bp

s 
/ x

10
0 

P
ps

)

 

 
Out Mbps
In Mbps
Out x100 Pps
In x100 Pps

Fig. 12. CCNx Peak Throughput Performance vs. Number of Name
Components (90% CI)

Figure 12 shows that CCNx router throughput, in terms
of both data rate and packet rate, decreases as the number
of name components increases, which is what we expect. In
particular, when the number of name components reaches32,
the data rates are close to40 Mbps, which is far below the
1Gbps packet processing goal.

To design (near) constant name lookup mechanisms, one
possible direction is to map longer names to shorter names
internally at each NDN node.

B. URL-format for Optimization

When designing algorithms, we can recognize that names
in NDN have a format similar to HTTP URLs. Our second
principle is to exploit the URL format for optimization. Two
features of URL format can be exploited. The first feature is
the component-based string matching. Exact and longest prefix
matching should take components as the matching units, rather
than individual characters. The second feature is to exploit
URL characteristics. For instance, the distribution of the
number of name components in URLs in real-world networks
can be used to guide the design of heuristics that achieve
constant-time performance when the expected distributions are
observed in NDN traffic. It is mentioned in [5] that most URLs
have fewer than30 name components. With such guidance, we
could design lookup structures capable of achieving constant
time lookup latency for names with 30 or fewer components.

C. Simple Data Structures for Fast Updates

Propagated Interest packets need to be inserted into the
PIT so that when the corresponding Data packet returns, the

Data packet can be successfully delivered to the interface that
requested it. After this, the record will be deleted from the
PIT. In the worst case, updates need to be done on each
packet’s arrival. Updates in data structures have been studied
before but never (so far as we know) studied at the frame
arrival rates in the data plane. We feel that using simple data
structures to implement components that require fast update
is the only path to high performance, since there will be
little time between arrivals to manipulate complicated, inter-
connected data structures. These data structures include hash
tables, d-left hash tables [19] and counting bloom filters [20].
Tree- or Trie- like data structures usually need readjusting in
order to balance the data structure following an edit, and thus
may not be as efficient as hash-based solutions.

D. Efficient Packet Encoding/Decoding

According to our CCNx profiling results, a significant
portion of packet processing time is spent on packet decoding,
which is unusual for high performance router design, where
string lookup is the bottleneck. CCNx employs a complicated
XML format to encode packets, which is good for network
architecture and protocol design as it is very flexible, but
it slows down the entire data plane. There are two ways to
solve this problem. The first way, which we think is very
challenging, is to develop a packet decoding algorithm that
can decode XML encoded packets quickly and efficiently. A
simpler way is to define a new packet format that favors fast
packet encoding and decoding. For instance, a simple and
efficient packet format could be similar to IP packets, where
each field of the packet has fixed length. The fields can store
offsets or other information of the packet, such as packet flags,
etc..

E. Different Content Store Policies

The Content Store not only enables Data packet caching and
redistribution, it also supports features beyond matchingexact
content. For example, an Interest packet can carry additional
flags to tell a CCNx router to respond with the latest version
of content without requesting a newer one from the producer.
The latest version is determined by the default ASCII order in
the name suffix. For example, suppose that one node requests
ccnx:/a/b/c as an Interest, including the “latest” flag. Suppose
further that the CS has content with the names of ccnx:/a/b/c/0
and ccnx:/a/b/c/1, which have prefix of /a/b/c (here 0 and
1 are version IDs, a common convention amongst CCNx
applications). Then the CS will respond with ccnx:/a/b/c/1as
the latest version. These complicated features go far beyond
exact matching and longest prefix matching. As a result, our
fifth principle is to handle this feature differently according to
the placement of routers and their corresponding performance
requirement. For edge routers with expected performance in
the range of 1Gbps, this feature should be supported. For core
routers or higher performance nodes with 10 Gbps as a target
rate, we do not suggest supporting this feature. Rather, we
think the goal should be to maintain simplicity and limit CS
matching to exact matching with hardware acceleration.



VI. CONCLUSION AND FUTURE WORK

In this paper, we describe the NDN forwarding plane and
analyze its implementation in CCNx. To the best of our
knowledge, this is the first description and analysis of CCNx
implementation details, including both data structures and
organization.

We have described a direction that we believe will lead
to data structures and a data plane organization that will
achieve scalable performance. After simplifying the data plane
organization with respect to CCNx, we identify three key
issues in NDN forwarding and present five principles to guide
the design of a scalable NDN forwarding plane. Our current
and future work focus on detailed solutions to the three key
issues, which are challenging for next-generation networking.

ACKNOWLEDGMENT

The authors wish to thank Pierluigi Rolando for writing
the original version of theccndelphisoftware when he was
a visiting scholar at Washington University in St. Louis. The
authors also thank John Dehart and Jyoti Parwatikar for their
support on the Open Network Laboratory. This work has
been supported by National Science Foundation Grant CNS-
1040643.

REFERENCES

[1] The NDN project team. Named Data Networking (NDN) Project. In
PARC Technical Report NDN-0001, October 2010.

[2] Van Jacobson et al.; Networking Named Content, In Proc. of CoNEXT
2009, Rome, December, 2009.

[3] CCNx: http://www.ccnx.org/.
[4] Somaya Arianfar; Pekka Nikander; Jorg Ott; On Content-Centric Router

Design and Implications. In Proc. of ACM ReArch 2010, November 30,
2010.

[5] Diego Perino; Matteo Varvello; A Reality Check for Content Centric
Networking. In Proc. of ACM ICN 1011, August 19, 2011, pp: 44-49.

[6] Giovanna Carofiglio; Massimo Gallo; Luca Muscariello; Bandwidth and
Storage Sharing Performance in Information Centric Networking. In Proc.
of ACM ICN 2011, August 19, 2011, pp: 26-31.

[7] Jiachen Chen; Mayutan Arumaithurai; Lei Jiao; XiaomingFu;
K.K.Ramakrishnan; COPSS: An Efficient Content Oriented Pub-
lish/Subscribe System. In Proc. of ANCS 2011, Brooklyn, NewYork.

[8] William Pugh; Skip Lists: A Probabilistic Alternative to Balanced Trees;
Commun. ACM, Vol 33, Issue 6, June, 1990, pp: 668-676.

[9] John DeHart et al.; The Open Network Laboratory; In Proc.of the 37th
SIGCSE Technical Symposium on Computer Science Education,2006.

[10] Charlie Wiseman et al.; A Remotely Accessible Network Processor-
Based Router for Network Experimentation; In Proc. of 4th ACM/IEEE
ANCS, 2008.

[11] Graham, Susan L. and Kessler, Peter B. and McKusick, Marshall K.;
Gprof: A Call Graph Execution Profiler; SIGPLAN, April, 2004.

[12] Nan Hua; Haoyu Song; Lakshman, T.V.; Variable-Stride Multi-Pattern
Matching For Scalable Deep Packet Inspection; In Proc. of IEEE INFO-
COM 2009, April 19-25 2009, pp: 415-423.

[13] Tian Song; Wei Zhang; Dongsheng Wang; Yibo Xue; A memoryefficient
multiple pattern matching architecture for network security. In Proc. of
IEEE INFOCOM 2008, April 13-18 2008, pp: 166-170.

[14] Derek Pao; Xing Wang; Xiaoran Wang; Cong Cao; Yuesheng Zhu;
String Searching Engine for Virus Scanning; In IEEE Transactions on
Computers, Nov. 2011, Volume: 60 Issue:11, pp: 1596-1609.

[15] Sailesh Kumar; Patrick Crowley; Segmented Hash: An Efficient Hash
Table Implementation for High-Performance Networking Subsystems;
In Proceedings of the 2005 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS). Princeton, N.J.
October, 2005.

[16] Yi-Hsuan Feng; Nen-Fu Huang; Chia-Hsiang Chen; An Efficient
Caching Mechanism for Network-Based URL Filtering by Multi-Level
Counting Bloom Filters. In Proc. of IEEE International Conference on
Communications (ICC), 5-9 June 2011.

[17] Zhou Zhou; Tian Song; Yunde Jia; A High-Performance URLLookup
Engine for URL Filtering Systems. In Proc. of IEEE International
Conference on Communications (ICC), 23-28 May 2010.

[18] Haowei Yuan; Benjamin Wun; Patrick Crowley; Software-based imple-
mentations of updateable data structures for high-speed URL matching. In
Proc. of the 6th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS ’10), October 2010.

[19] Andrei Broder; Michael Mitzenmacher; Using multiple hash functions
to improve IP lookups; In Proc. of IEEE INFOCOM 2001, April 22-26
2001, pp: 1454-1463.

[20] Andrei Broder; Michael Mitzenmacher; Network Applications of Bloom
Filters: A Survey; Internet Mathematics 1 (4) 2005. pp: 485-509.


