
NDN, Technical Report NDN-0021. http://named-data.net/techreports.html

NFD Developer’s Guide

Alexander Afanasyev1, Junxiao Shi2, Beichuan Zhang2, Lixia Zhang1, Ilya Moiseenko1, Yingdi Yu1,
Wentao Shang1, Yi Huang2, Jerald Paul Abraham2, Steve DiBenedetto3, Chengyu Fan3, Christos

Papadopoulos3, Davide Pesavento4, Giulio Grassi4, Giovanni Pau4, Hang Zhang5, Tian Song5, Haowei
Yuan6, Hila Ben Abraham6, Patrick Crowley6, Syed Obaid Amin7, Vince Lehman7, and Lan Wang7

1University of California, Los Angeles
2The University of Arizona
3Colorado State University

4University Pierre & Marie Curie, Sorbonne University
5Beijing Institute of Technology

6Washington University in St. Louis
7The University of Memphis

NFD Team

Abstract

NDN Forwarding Daemon (NFD) is a network forwarder that implements the Named Data Networking (NDN) protocol.
NFD is designed with modularity and extensibility in mind to enable easy experiments with new protocol features, algo-
rithms, and applications for NDN. To help developers extend and improve NFD, this document explains NFD’s internals
including the overall design, major modules, their implementations, and their interactions.

Revision history

Revision Revision date Description
1 July 1, 2014 Initial release
2 August 25, 2014 Updated steps in forwarding pipelines, nfd::BestRouteStrategy

is replaced with nfd::BestRouteStrategy2 that allows client-
based recovery from Interest losses

3 February 3, 2015 Updates for NFD version 0.3.0:
• In Strategy interface, beforeSatisfyPendingInterest renamed

to beforeSatisfyInterest
• Added description of dead nonce list and related changes to

forwarding pipelines
• Added description of a new strategy_choice config file

subsection
• Amended unix config text to reflect removal of ”listen” op-

tion
• Added discussion about encapsulationg of NDN packets in-

side WebSocket messages
• Revised FaceManager description, requiring canonical

FaceUri in create operations
• Added description of the new access router strategy

1

http://named-data.net/techreports.html

CONTENTS CONTENTS

Contents

1 Introduction 4
1.1 NFD Modules . 4
1.2 How Packets are Processed in NFD . 5
1.3 How Management Interests are Processed in NFD . 6

2 Face System 7
2.1 Face URI . 7
2.2 Protocol Factory Abstraction . 9
2.3 Channel Abstraction . 9
2.4 Face Abstraction . 10
2.5 WebSocket Face and Encapsulation of NDN Packet . 11
2.6 Extending NFD Face System . 11

3 Tables 12
3.1 Forwarding Information Base (FIB) . 12

3.1.1 Structure and Semantics . 12
3.1.2 Usage . 13

3.2 Content Store (CS) . 13
3.2.1 Semantics and Usage . 13
3.2.2 Implementation . 13

3.3 Interest Table (PIT) . 15
3.3.1 PIT Entry . 15
3.3.2 PIT . 16

3.4 Dead Nonce List . 16
3.4.1 Structure, Semantics, and Usage . 17
3.4.2 Capacity Maintenance . 17

3.5 Strategy Choice Table . 17
3.5.1 Structure and Semantics . 18
3.5.2 Usage . 18

3.6 Measurements Table . 18
3.6.1 Structure . 19
3.6.2 Usage . 19

3.7 NameTree . 19
3.7.1 Structure . 19
3.7.2 Operations and Algorithms . 21
3.7.3 Shortcuts . 21

4 Forwarding 23
4.1 Forwarding Pipelines . 23
4.2 Interest Processing Path . 23

4.2.1 Incoming Interest Pipeline . 24
4.2.2 Interest Loop Pipeline . 25
4.2.3 Outgoing Interest Pipeline . 25
4.2.4 Interest Reject Pipeline . 26
4.2.5 Interest Unsatisfied Pipeline . 26
4.2.6 Interest Finalize Pipeline . 27

4.3 Data Processing Path . 27
4.3.1 Incoming Data Pipeline . 27
4.3.2 Data Unsolicited Pipeline . 28
4.3.3 Outgoing Data Pipeline . 28

2

CONTENTS CONTENTS

5 Forwarding Strategy 30
5.1 Strategy API . 30

5.1.1 Triggers . 30
5.1.2 Actions . 31
5.1.3 Storage . 31

5.2 Built-in Strategies . 31
5.2.1 Best Route Strategy . 32
5.2.2 Broadcast Strategy . 32
5.2.3 Client Control Strategy . 32
5.2.4 NCC Strategy . 32
5.2.5 Access Router Strategy . 32

5.3 How to Develop a New Strategy . 33
5.3.1 Should I Develop a New Strategy? . 33
5.3.2 Develop a New Built-in Strategy . 33

6 Management 35
6.1 Managers . 36

6.1.1 Face Manager . 36
6.1.2 FIB Manager . 38
6.1.3 Strategy Choice Manager . 39
6.1.4 Forwarder Status . 39

6.2 Management Support Classes . 39
6.2.1 Manager Base . 39
6.2.2 Internal Face . 40
6.2.3 Segment Publisher . 40
6.2.4 Notification Stream . 40
6.2.5 Command Validator . 40
6.2.6 General Configuration File Section Parser . 41
6.2.7 Tables Configuration File Section Parser . 41

7 RIB Management 42
7.1 Initializing NRD . 42
7.2 Communicating with NRD . 42

7.2.1 Registering a Route . 44
7.2.2 Unregistering a Route . 44

7.3 RIB Entry . 44
7.4 Prefix Registration Flags . 44

7.4.1 Examples . 45
7.4.2 Cost Inheritance . 45

7.5 On Request . 45
7.6 Termination . 46
7.7 Extending RIB Manager . 46

8 Security 47
8.1 Interface Control . 47
8.2 Trust Model . 47

8.2.1 Command Interest . 47
8.2.2 NFD Trust Model . 48
8.2.3 NRD Trust Model . 48

9 Common Services 49
9.1 Configuration File . 49

9.1.1 User Info . 49
9.1.2 Developer Info . 51

9.2 Basic Logger . 51
9.2.1 User Info . 51
9.2.2 Developer Info . 52

9.3 Hash Computation Routines . 52

3

CONTENTS CONTENTS

9.4 DNS Resolver . 52
9.5 Event Emitter . 53
9.6 Face Status Monitoring Helper . 53
9.7 Global Scheduler . 54
9.8 Global IO Service . 54

References 55

4

1 INTRODUCTION

1 Introduction

NDN Forwarding Daemon (NFD) is a network forwarder that implements and evolves together with the Named Data
Networking (NDN) protocol [1]. This document explains the internals of NFD and is intended for developers who are
interested in extending and improving NFD. Other information about NFD, including instructions of how to compile and
run NFD, are available on NFD’s home page [2].

The main design goal of NFD is to support diverse experimentation with NDN architecture. The design emphasizes
modularity and extensibility to allow easy experiments with new protocol features, algorithms, and applications. We have
not fully optimized the code for performance. The intention is that performance optimizations are one type of experiments
that developers can conduct by trying out different data structures and different algorithms; over time, better implementations
may emerge within the same design framework.

NFD will keep evolving in three aspects: improvement of the modularity framework, keeping up with the NDN protocol
spec, and addition of new features. We hope to keep the modular framework stable and lean, allowing researchers to
implement and experiment with various features, some of which may eventually work into the protocol specification.

1.1 NFD Modules

The main functionality of NFD is to forward Interest and Data packets. To do this, it abstracts lower-level network transport
mechanisms into NDN Faces, maintains basic data structures like CS, PIT, and FIB, and implements the packet processing
logic. In addition to basic packet forwarding, it also supports multiple forwarding strategies, and a management interface to
configure, control, and monitor NFD. As illustrated in Figure 1, NFD contains the following inter-dependent modules:

• ndn-cxx Library, Core, and Tools (Section 9)

Provides various common services shared between different NFD modules. These include hash computation routines,
DNS resolver, config file, Face monitoring, and several other modules.

• Faces (Section 2)

Implements the NDN Face abstraction on top of various lower level transport mechanisms.

• Tables (Section 3)

Forwarding

Management

FacesTables

Core

Strategies

RIB Manager

ndn-cxx l ibrary

- management

Tools

Figure 1: Overview of NFD modules

5

1.2 How Packets are Processed in NFD 1 INTRODUCTION

Implements the Content Store (CS), the Pending Interest Table (PIT), the Forwarding Information Base (FIB), Stra-
tegyChoice, Measurements, and other data structures to support forwarding of NDN Data and Interest packets.

• Forwarding (Section 4)

Implements basic packet processing pathways, which interact with Faces, Tables, and Strategies (Section 5).

Strategies is a major part of the forwarding module. It implements a framework to support different forwarding
strategies in the form of forwarding pipelines, described in detail in Section 4.

• Management (Section 6)

Implements the NFD Management Protocol [3], which allows applications to configure NFD and set/query NFD’s
internal states. Protocol interaction is done via NDN’s Interest/Data exchange between applications and NFD.

• RIB Management (Section 7)

Manages the routing information base (RIB). The RIB may be updated by different parties in different ways, including
various routing protocols, application prefix registrations, and command-line manipulation by sysadmins. The RIB
management module processes all these requests to generate a consistent forwarding table, and syncs it up with NFD’s
FIB, which contains only the minimal information needed for forwarding decisions. Strictly speaking RIB management
is part of the NFD management module, but due to its importance to the overall operations and its more complex
processing, we implement it as a separate module.

The rest of this document will explain all these modules in more detail.

1.2 How Packets are Processed in NFD

To give readers a better idea on how NFD works, this section explains how a packet is processed in NFD.
Packets arrive at NFD via Faces. “Face” is a generalization of “interface”. It can be either a physical interface (where NDN

operates directly over Ethernet), or a overlay tunnel (where NDN operates as an overlay above TCP or UDP). In addition,
NFD communicates with local application via a UNIX-domain socket, which is also a Face. The Face reads incoming stream
or datagrams via operating system API, strips away link-layer headers if any, and delivers network layer packets (NDN-TLV
Interest or Data) to the forwarding.

A network layer packet (Interest or Data) is processed by forwarding pipelines, which define series of steps that operate
on the packet. NFD’s data plane is stateful, and what NFD does to a packet depends on not only the packet itself but also
the forwarding state, which is stored in tables.

An incoming Interest is first inserted to the Interest table (PIT), where each entry represents a pending Interest or a
recently satisfied Interest. If the Interest is not a duplicate, a lookup is performed on the Content Store (CS), which is an
in-network cache of Data packets. If there is a matching Data packet in CS, that Data packet is returned to the requester;
otherwise, the Interest needs to be forwarded.

A forwarding strategy decides how to forward an Interest. NFD allows per-namespace strategy choice; to decide which
strategy is responsible for forwarding an Interest, a longest prefix match lookup is performed on the Strategy Choice table,
which contains strategy configuration. The strategy responsible for an Interest (or, more precisely, the PIT entry) makes
a decision whether, when, and where to forward the Interest. While making this decision, the strategy can take input
from the Forwarding Information Base (FIB), which contains routing information that comes from local application’s prefix
registrations and routing protocols, use strategy-specific information stored in the PIT entry, and record and use data plane
performance measurements in Measurements entry.

After the strategy decides to forward an Interest to a specified Face, the Interest goes through a few more steps in
forwarding pipelines, and then it is passed to the Face. The Face, depending on the underlying protocol, adds link-layer
header, fragments if necessary, and sends the link-layer packets as outgoing stream or datagrams via operating system API.

An incoming Data is processed differently. Its first step is checking the Interest table to see if there are PIT entries that
can be satisfied by this Data packet. All matched entries are then selected for further processing. If this Data can satisfy
none of the PIT entries, it is unsolicited and it is dropped; as a special case, an unsolicited Data from a local application is
cached in the Content Store. Otherwise, the Data is added to the Content Store. Forwarding strategy that is responsible for
each of the mat PIT entries is notified. Through this notification, and another “no Data comes back” timeout, the strategy is
able to observe the reachability and performance of paths; the strategy can remember its observations in the Measurements
table, in order to improve its future decisions. Finally, the Data is sent to all requesters, recorded in downstream records
(in-records) of the PIT entries; the process of sending a Data via a Face is similar to sending an Interest.

6

1.3 How Management Interests are Processed in NFD 1 INTRODUCTION

1.3 How Management Interests are Processed in NFD

NFD Management protocol [3] defines three inter-process management mechanisms that are based on Interest-Data exchanges:
control commands, status datasets, and notification streams. This section gives a brief overview how these mechanisms work
and what are their requirements.

A control command is a signed (authenticated) Interest to perform a state change within NFD. Since the objective of
each control command Interest is to reach the destination management module and not be satisfied from CS, each control
command Interest is made unique through the use of timestamp and nonce components. For more detail refer to control
command specification [4].

When NFD receives the command Interest, it directs the Interest to a special Face, called the Internal Face.1 When an
Interest is forwarded to this Face, it is dispatched internally to a designated manager (e.g., Interests under /localhost/

nfd/faces are dispatched to the Face manager, see Section 6). The manager then looks at the Interest name to decide which
action is requested. If the name refers to a valid control command, the manager validates the command (checks the signature
and validates whether the requester is authorized to send this command), and performs the requested action if validation
succeeds. The response is sent back to the requester as a Data packet, which is processed by forwarding and Face in the
same way as a regular Data.

The exception from the above procedure is RIB Management (Section 7), which is implemented as a separate daemon.
All RIB Management control commands, instead of Internal Face, are forwarded toward the RIB daemon, the same way as
forwarding to any local application (RIB daemon “registers” itself with NFD for the RIB management prefix when it starts).

A status dataset is either periodically (e.g., NFD status) or on-demand (e.g., NFD Face status) generated dataset with
some internal NFD status. These datasets can be requested by anybody using a simple unsigned Interest directed towards the
specific management module, as defined in the specification [3]. An Interest requesting a new version of a status dataset is
forwarded to the internal Face and then the designated manager the same way as control commands. The manager, however,
will not validate this Interest, but instead generate all segments of the requested dataset and put them into the forwarding
pipeline. This way, the first segment of the dataset will directly satisfy the initial Interest, while others will satisfy the
subsequent Interests through CS. In the unlikely event when subsequent segments are evicted from the CS before being
fetched, the requester is responsible for restarting the fetch process from the beginning.

Notification streams are similar to status datasets (can be accessed by anybody with an unsigned Interests), but
they operate slightly differently. The subscribers that want receive notification streams are still sending Interests and these
Interests are still directed toward the designated manager. However, it is expected that these Interests will not be satisfied
immediately, and the subscribers are expected to re-express the notification stream Interests when they expire. Whenever a
notification is generated, the manager puts a Data packet into the forwarding, satisfying all outstanding notification stream
Interests, and the notification is getting delivered to all subscribers.

1There is always a FIB entry for the management protocol prefix that points to the Internal Face.

7

2 FACE SYSTEM

2 Face System

The face system in NFD is separated into three logical abstractions: protocol factories, channels, and faces. A protocol
factory create channels or faces of specific protocols (e.g., the TCP protocol factory creates TCP faces). A channel
represents NFD-side endpoint for unicast communications (i.e., “listening” socket or socket from which connection will be
established). We call this endpoint “local”, while the “remote” endpoint represents the other side of the communication (a
network node, an application, or a set of remote peers). Both endpoints in NFD are described using concept of FaceURI,
which defines protocol and protocol-specific parameters of the endpoint (see Section 2.1). A Face is an abstraction which
implements communication primitives to actually send and receive Interest and Data packets. Depending on nature of
communication, a Face can represent slightly different elements. For “unicast” communications (TCP, unicast UDP, UNIX
sockets, WebSocket [5]), a Face represents a connection between local and remote endpoints for the specific protocol, i.e, a
connection between NFDs on different network nodes or local NFD and local application. For multi-access communications
(Ethernet, IP multicast), a Face represents a virtual connection between a local endpoint and zero or more remote peers.

The overall interaction between these abstractions is illustrated in Figure 2 and each abstraction is described in detail in
the following sections. In short, these interactions can be summarized as: protocol factories create channels, channels create
faces, and faces are actually responsible for sending and receiving Interest and Data packets through the protocol-specific
tunnel.

The current implementation is heavily based on the Boost.Asio library [6] and uses asynchronous operations as much as
possible to avoid blocking the rest of the daemon while performing potentially lengthy network operations.

FaceManager
(nfd)

Aggregate protocol
factories

Process FaceManagement
commands

WebSocketFactory

UnixStreamFactory

UdpFactory

TcpFactory

EthernetFactory

Aggregate channels of
the same type

Create Channel

Create MulticastFace
ProtocolFactory

UnixStreamChannel

WebSocketChannel

UdpChannel

TcpChannel
Channel

Accept connections on local
endpoint (tcp, unix, ws)

Connect to remote endpoint

Accept packets on local
endpoint (udp)

Create unicast
Face

Lookup existing
Face using remote

endpoint

Face
Send out Interest and

Data packets

Receive Interest and
Data packets

Destroy

Dispatch createFace requests
to correct Channel based on

supplied FaceUri

Figure 2: Face, Channel, ProtocolFactory interactions

2.1 Face URI

A Face URI (nfd::FaceUri class) identifies a protocol endpoint and is used in Face (for local and remote endpoints) and in
Channel (local endpoint) abstractions. The Face URI is similar as normal URI and is composed of the protocol name and
other protocol-specific identifying information (e.g., IP address and port).

Note that some Face types will have different types of Face URI types for the local and remote endpoints. This depends on
what exactly these endpoints represent. For example, UnixStream Face has UNIX Stream type of Face URI to represent the
local endpoint, while FileDescriptor type used to identify the application connected to the UNIX socket. Another example
is multicast Ethernet Face, where the local endpoint represents NFD itself (MAC address of a network interface) and the
remote endpoint represents the set of remote peers connected to the network interface (network device).

8

2.1 Face URI 2 FACE SYSTEM

The following description shows examples of Face URI formats for the implemented protocols (see NFD Face Management
specification for more detail [3]). When developing new Face, these examples can be used for defining Face URI format for
the newly implemented protocol.

UDP: udp[4|6]://<IP-or-host>[:<port>]

• udp4://192.0.2.1:6363 (canonical form)

• udp6://[2001:db8::1]:6363 (canonical form)

• udp://192.0.2.1 (remote-port defaults to 6363)

• udp://example.net:6363

• udp4://example.net:6363 (resolve hostname to IPv4 address only)

• udp6://example.net:6363 (resolve hostname to IPv6 address only)

• udp4://224.0.23.170:56363 (multicast, canonical form)

TCP: tcp[4|6]://<IP-or-host>[:<port>]

• tcp4://192.0.2.1:6363 (canonical form)

• tcp6://[2001:db8::1]:6363 (canonical form)

• tcp://192.0.2.1 (remote-port defaults to 6363)

• tcp://example.net:6363

• tcp4://example.net:6363 (resolve hostname to IPv4 address only)

• tcp6://example.net:6363 (resolve hostname to IPv6 address only)

UNIX stream: unix://<path>

• unix:///var/run/nfd.sock (note there are three forward-slashes after ’unix’)

File Descriptor: fd://<file-descriptor>

• fd://6

Ethernet ether://<MAC>

• ether://08:00:27:01:01:01

Network Device: dev://<ifname>

• dev://eth0

9

2.2 Protocol Factory Abstraction 2 FACE SYSTEM

2.2 Protocol Factory Abstraction

The protocol factory is the highest level abstraction in NFD’s face system. Each protocol factory handles a specific protocol
that is natively supported by NFD. Table 1 describes the current set of support protocols.

NFD currently supports the protocols described in Table 1. Note that the protocols marked “listen only” are limited to
listen and accept incoming connections and cannot initiate connections to remote endpoints.

Table 1: Supported protocols

Protocol Unicast Multicast Factory Class Channel Class Face Class
Unix domain stream-oriented sockets Listen only No UnixStreamFactory UnixStreamChannel UnixStreamFace

Raw Ethernet type-II frames No Yes EthernetFactory N/A EthernetFace (multicast)
TCP Yes No TcpFactory TcpChannel TcpFace, TcpLocalFace
UDP Yes Yes UdpFactory UdpChannel UdpFace, UdpMulticastFace
WebSocket [5] Listen only No WebSocketFactory WebSocketChannel WebSocketFace

The two main tasks that the protocol factory is designed to do are: (1) creation and management of channels (cre-
ateChannel), and (2) creation and management of multicast faces (createMulticastFace). Most protocol factories support
both operations. However, some protocols may support only the ability to create channels (e.g., UnixStreamFactory and
TcpFactory) or only the ability to create multicast faces (e.g., EthernetFactory).

The ProtocolFactory abstract class defines two basic type aliases employed throughout the face system: FaceCre-

atedCallback and FaceConnectFailedCallback. These types are just C++ typedefs for function pointers used as callbacks
in asynchronous operations, but they help to make the code easier to read and understand.

Moreover, ProtocolFactory requires subclasses to implement the pure virtual method createFace(const FaceUri&

uri, const FaceCreatedCallback& onCreated, const FaceConnectFailedCallback& onConnectFailed), which is a con-
venience wrapper responsible for automatically selecting a suitable channel (based on the uri parameter) and delegating the
actual face creation to it. Factories that do not support unicast faces may throw an error when createFace is invoked.

2.3 Channel Abstraction

The purpose of the channel abstraction is to encapsulate the functionalities needed to accept incoming connections or to
start outgoing connections, and to create a face when the connection attempt is successful.

Channels are created by createChannel(const Endpoint& localEndpoint) method on protocol factories. This method
allocates and returns a channel that can listen and accept incoming connections on the specified local endpoint. An endpoint
is a protocol-specific type that encapsulates all the information needed to uniquely identify an endpoint on a machine, for
example in the TCP case the endpoint is the pair 〈host, port〉. Multiple channels can be created from the same protocol
factory, but each channel must be instantiated on a different local endpoint. Also note that channels make sense only for
protocols that support unicast faces; for instance, there is no Ethernet channel, because the Ethernet face is exclusively
multicast.

Usually, when a channel is constructed, no resources are reserved; thus, in order to prepare it for accepting connections,
listen must be called on the channel instance. This method takes care of allocating the necessary operating system resources
(sockets, ports, . . .), and then starts listening for incoming connections in a non-blocking fashion. This means that listen

returns immediately and that incoming connection attempts are serviced from Boost.Asio’s event loop.
When channel receives an incoming connection on a specific local endpoint (e.g., an application connected to specific

UNIX socket, remote NFD established TCP connection to specific IP/port, etc.), the designated callback of the channel
bound to that endpoint is invoked. This callback function will create a Face for the corresponding protocol, which, in turn,
executes the FaceCreatedCallback that was supplied to the initial listen invocation, and will start handling all subsequent
communications for the connection. If any errors or timeouts are encountered during this procedure, the connection setup is
aborted and ConnectFailedCallback is executed instead.

For session-less protocols such as UDP the concept of establishing a connection obviously does not apply, therefore for
these protocols the listen method just puts the channel in an asynchronous wait for incoming packets. As soon as a
datagram is received from an unknown peer (i.e., no Face is already handling the remote endpoint), a new face is instantiated
and the triggering packet is handed over to it for normal processing. Upon creation, the face binds itself to the local and
remote endpoints, thus all subsequent packets from that peer will be dispatched directly to the face by the OS kernel.

The process of establishing a connection to a remote peer entails calling the method connect, which starts an asynchronous
connection attempt towards the specified endpoint. Non-blocking host name resolution is automatically performed if needed
(see Section 9.4). If the connection is successful, a face is instantiated and the caller-supplied FaceCreatedCallback is
invoked; otherwise, the error is signaled via ConnectFailedCallback.

10

2.4 Face Abstraction 2 FACE SYSTEM

Note that UDP protocol handles slightly differently Faces that are created “on-demand” (as a response of received a
datagram from a remote host) and Faces that are created through explicit “connect” operation. When Face is created on-
demand, it will be automatically destroyed after the configured time interval (see Section 9.1) if there was nothing has been
received or sent through this Face. The explicitly connected Faces will never be automatically destroyed and will exist until
it is explicitly destroyed or some network failure happens (e.g., when system’s IP stack goes down). When connect command
is issued for already created on-demand Face, the Face is simply converted to “non-demand” state and will no longer be
considered for automatic destruction.

2.4 Face Abstraction

EthernetFace

+~Face()
+sendInterest(interest : Interest &) : void
+sendData(data : Data &) : void
+close() : void
+getId() : FaceId
+setDescription(description : string &) : void
+getDescription() : string &
+isLocal() : bool
+isMultiAccess() : bool
+isUp() : bool
+isOnDemand() : bool
+getCounters() : FaceCounters &
+getRemoteUri() : FaceUri &
+getLocalUri() : FaceUri &
+Face(remoteUri : FaceUri &, localUri : FaceUri &, isLocal : bool = false)

Face

AppFace

DatagramFace

InternalFace

LocalFace

MulticastUdpFace

StreamFace

TcpFaceTcpLocalFaceUdpFace UnixStreamFace WebSocketFace

"Local" faces"Local" face

Protocol : class Protocol : class
FaceBase : class

Figure 3: NFD faces

The Face abstraction contains the low-level communication primitives to send and receive Interest and Data packets. All
faces derive from the common Face abstract base class and the various concrete subclasses can be categorized according to
different criteria. For example, we can distinguish between (Figure 3):

• Local and non-local faces: the Internal, TcpLocal, and UnixStream faces are considered local, because they can com-
municate only with other programs running on the same machine (this restriction is enforced by NFD). Local faces are
the only ones that can send to and receive from the “/localhost” namespace; they can also support the LocalCon-
trolHeader [7] that is used by some special applications. All other faces are considered non-local.

• Unicast and multicast faces: unicast faces, such as TcpFace, UdpFace, and WebSocketFace, can communicate with a
single peer, i.e. packets are sent from the local endpoint to exactly one remote endpoint and vice versa. Multicast faces,
on the other hand, are able to transmit a single packet to multiple remote endpoints, and receive from all of them,
forming a set of intercommunicating peers that is usually called multicast group; the MulticastUdp and Ethernet faces
are examples of multicast faces.

• Datagram and stream faces: this distinction is based on the same difference that exists between datagram-oriented and
stream-oriented sockets. Therefore the Udp and MulticastUdp faces are datagram faces, while the Tcp and UnixStream
faces are stream faces.

11

2.5 WebSocket Face and Encapsulation of NDN Packet 2 FACE SYSTEM

2.5 WebSocket Face and Encapsulation of NDN Packet

WebSocket is the protocol used by many Web applications running inside Web browsers to connect to remote hosts without
using HTTP/HTTPS. It is also used by NDN.JS client library to establish connections between Web browsers and NDN
forwarders. WebSocket implements a message-based protocol (on top of TCP for reliability). Therefore it is necessary to
clarify how NDN packets should be encapsulated inside WebSocket frames.

The current implementation of WebSocketFace in NFD only accepts NDN packets encapsulated in exactly ONE Web-
Socket frame. Frames containing incomplete NDN packets will be dropped silently and the event will be logged by NFD. For
frames containing more than one NDN packets, the packets after the first one will be ignored by NFD. Client applications
(and libraries) should not send such packets to NFD. For example, a JavaScript client inside a Web browser should always
feed complete NDN packets into the WebSocket.send() interface.

Note that this behavior is different from the old WebSocket proxy, which was used to bridge WebSocket clients to the
old ccnd/ndnd forwarder. The WebSocket proxy simply converts TCP segments received from the forwarder into separate
WebSocket frames. Since it is valid for NDN packets to span across multiple TCP segments, it is possible for the proxy
to send out WebSocket frames with partial NDN packets. As a result, the NDN.JS client library had to implement the
functionality of parsing and de-fragmenting partial NDN packets. This is no longer needed when the client is talking to an
NFD forwarder.

2.6 Extending NFD Face System

To extend NFD with a new type of Face, developers need to implement the face, channel and protocol factory abstractions.
The new classes will typically inherit from the Face, Channel and ProtocolFactory base classes respectively.

The new factory class interacts directly with the face manager and is created upon startup of the daemon. The configu-
ration for the new type of face is written in the nfd.conf file (see Section 9.1). Developers usually need to add a new method
processSectionXYZ into FaceManager to read and process the configuration section for the new face type. After parsing the
configuration, this method will create new factories and add the factories into an internal hash table. Developers can follow
the patterns in other processSectionXYZ methods when implementing this function.

The factory class usually provides two interfaces: createChannel and createFace. createChannel will open a local
endpoint to wait for connections from other NFD instances. createFace will allow NFD to connect to other NFD instances. If
the developer decides that the new face protocol will not be used for interconnections between forwarders (e.g., the WebSocket
protocol), the body of createFace should throw an exception.

The channel class manages all incoming connections. It must provide a listen method to start listening on the local
socket. In some cases the channel class may be required to perform message dispatching (e.g., demultiplexing among multiple
faces on the same local endpoint), depending on how the underlying communication protocol is implemented. It also needs
to handle connection close and remove that connection from the internal face table.

The face class provides the basic communication primitives such as sendInterest, sendData, close, and so on. When
implementing the receiving function, developers only need to check the length of the incoming message to make sure that the
TLV wire encoding in the received packet is complete. For stream-based protocols, this means that in most cases an internal
buffer must be maintained in order to collect all incoming segments, until the entire NDN-TLV packet is available and can
be parsed. Finally developers simply invoke decodeAndDispatchInput, which is inherited from the Face base class. That
method will check the type field of the incoming packet (i.e., Interest or Data) and pass the packet to NFD’s forwarding
pipeline (see Section 4).

12

3 TABLES

3 Tables

The tables module provides main data structures for NFD.
The Forwarding Information Base (FIB) (Section 3.1) is used to forward Interest packets toward potential source(s) of

matching Data. It’s almost identical to an IP FIB except it allows for a list of outgoing faces rather than a single one.
The Content Store (CS) (Section 3.2) is a cache of Data packets. Arriving Data packets are placed in this cache as long

as possible, in order to satisfy future Interests that request the same Data.
The Interest Table (PIT) (Section 3.3) keeps track of Interests forwarded upstream toward content source(s), so that Data

can be sent downstream to its requester(s). It also contains recently satisfied Interests for loop detection and measurements
purposes.

The Dead Nonce List (Section 3.4 supplements the Interest Table for loop detection.
The Strategy Choice Table (Section 3.5) contains the forwarding strategy (Section 5) chosen for each namespace.
The Measurements Table (Section 3.6) is used by forwarding strategies to store measurements information regarding a

name prefix.
FIB, PIT, Strategy Choice Table, and Measurements Table have much commonality in their index structure. To improve

performance and reduce memory usage, a common index, the Name Tree (Section 3.7), is designed to be shared among these
four tables.

3.1 Forwarding Information Base (FIB)

The Forwarding Information Base (FIB) is used to forward Interest packets toward potential source(s) of matching Data [8].
For each Interest that needs to be forwarded, a longest prefix match lookup is performed on the FIB, and the list of outgoing
faces stored on the found FIB entry is an important reference for forwarding.

The structure, semantics, and algorithms of FIB is outlined in Section 3.1.1. How FIB is used by rest of NFD is described
in Section 3.1.2. The implementation of FIB algorithms is discussed in Section 3.7.

3.1.1 Structure and Semantics

Figure 4 shows logical content and relationships between the FIB, FIB entries, and NextHop records.

FIB

Entry

Name prefixPK

NextHop

FacePK

cost

Figure 4: FIB and related entities

FIB entry and NextHop record
A FIB entry (nfd::fib::Entry) contains a name prefix and a non-empty collection of NextHop records. A FIB entry

of a certain prefix means that given an Interest under this prefix, a potential source(s) of matching Data can be reached via
the faces given by the NextHop record(s) in this FIB entry.

Each NextHop record (nfd::fib::NextHop) contains an outgoing face toward a potential content source and its routing
cost. A FIB entry can contain at most one NextHop record toward the same outgoing face. Within a FIB entry, NextHop
records are ordered by ascending cost. The routing cost is relative between NextHop records; the absolute value is insignificant.

Unlike the RIB (Section 7.3), there is no inheritance between FIB entries. The NextHop records within a FIB entry are
the only “effective” nexthops for this FIB entry.

FIB
The FIB (nfd::Fib) is a collection of FIB entries, indexed by name prefix. The usual insertion, deletion, exact match

operations are supported. FIB entries can be iterated over in a forward iterator, in unspecified order.
Longest Prefix Match algorithm (Fib::findLongestPrefixMatch) finds a FIB entry that should be used to guide the

forwarding of an Interest. It takes a name as input parameter; this name should be the name field in an Interest. The return

13

3.2 Content Store (CS) 3 TABLES

value is a FIB entry such that its name prefix is (1) a prefix of the parameter, and (2) the longest among those satisfying
condition 1; NULL is returned if no FIB entry satisfy condition 1.

Fib::removeNextHopFromAllEntries is a convenient method that iterates over all FIB entries, and removes NextHop
record of a certain face from every entry. Since a FIB entry must contain at least one FIB entry, if the last NextHop record
is removed, the FIB entry is deleted. This is useful when a face is gone.

3.1.2 Usage

The FIB is updated only through using FIB management protocol, which on NFD sides is operated by the FIB manager
(Section 6.1.2). Typically, FIB manager takes commands from RIB Daemon (Section 7), which in turn receives static routes
configured manually or registered by applications, and dynamic routes from routing protocols. Since most FIB entries
ultimately come from dynamic routes, the FIB is expected to contain a small number of entries, if the network has a small
number of advertised prefixes.

The FIB is expected to be relatively stable. FIB updates are triggered by RIB updates, which in turn is caused by
manual configuration, application startup or shutdown, and routing updates. These events are infrequent in a stable network.
However, each RIB update can cause lots of FIB updates, because changes in one RIB entry may affect its descendants due
to inheritance.

The longest prefix match algorithm is used by forwarding in incoming Interest pipeline (Section 4.2.1). It is called at
most once per incoming Interest.

3.2 Content Store (CS)

The Content Store (CS) is a cache of Data packets. Arriving Data packets are placed in this cache as long as possible, in
order to satisfy future Interests that request same Data. As define in NDN architecture [8] and described in more detail in
Section 4, the Content Store is searched before the incoming Interest is given to the forwarding strategy for further processing.
This way, the cached Data, if available, can be used to satisfy the Interest without actually forwarding the Interest anywhere
else.

The following section will define the semantics and algorithms of CS, while details about the existing implementation are
discussed in Section 3.2.2.

3.2.1 Semantics and Usage

The Content Store (nfd::Cs) is a cache of Data packets. Data packets are inserted to the CS (Cs::insert) either in the
incoming Data pipeline (Section 4.3.1) or in the Data unsolicited pipeline (Section 4.3.2). However, before actually inserting
the Data packet, both forwarding pipelines ensure eligibility of the Data packet to be processed at all (e.g., that the Data
packet does not violate the name-based scope [9]. When the Data packet is inserted, the current timestamp is stored along
with the cached packet, so that CS could later determine if the Data packet becomes stale and cannot be used to match an
Interest with the MustBeFresh selector [1].

CS is queried (Cs::find) with an incoming Interest before it’s forwarded in incoming Interest pipeline (Section 4.2.1).
The search algorithm returns the Data packet that best matches the Interest, or returns null if no Data packet matches the
Interest.

CS has limited capacity, measured in number of packets. It is controlled via NFD configuration file (Section 6.2.7).
Management calls Cs::setLimit to update the capacity. CS implementation should ensure number of cached packets does
not exceed the capacity.

3.2.2 Implementation

CS performance has a big impact on the overall performance of NFD, because it stores a large number of packets, and virtually
every packet accesses the CS. The choice of the underlying data structure for an efficient lookup, insertion, and deletion, and
cache replacement algorithm (e.g., FIFO, LRU, LFU) is crucial for maximizing the practical benefits of in-network caching.

The current implementation of CS uses a skip list [10] as its underlying data structure. Skip lists are a probabilistic
alternative to balanced trees. Skip lists are balanced by virtue of a random number generator. Its average insertion and
lookup complexity is O(log n) (Figure 5). CS entries are placed in the Skip List in ascending order (by Name) [1].

The assumption behind CS design is that it operates at its maximum capacity all the time. Therefore, it must have
an efficient cache replacement strategy. The current implementation evicts CS entries based on prioritized FIFO (First In
First Out) strategy. The entries that get removed first are unsolicited Data packets, which are the Data packets that got
cached opportunistically without preceding forwarding of the corresponding Interest packet. Next, the Data packets with

14

3.2 Content Store (CS) 3 TABLES

Figure 5: Insertion of an item into a SkipList

expired freshness are removed. Last, the Data packets are removed from the Content Store on a pure FIFO basis. This cache
replacement policy is currently hard-coded; we intend to make it replaceable in the future (NFD Task 1207).

cs
-m_skipList : SkipList
-m_cleanupIndex : CleanupIndex
-m_nMaxPackets : size_t
-m_nPackets : size_t
-m_freeCsEntries : queue<Entry*>

+Cs(nMaxPackets : int = 65536)
+~Cs()
+insert(data : Data &, isUnsolicited : bool = false) : bool
+find(interest : Interest &) : Data const*
+erase(exactName : Name &) : void
+setLimit(nMaxPackets : size_t) : void
+getLimit() : size_t
+size() : size_t

Cs

+LayerIterators : map<int, list<Entry*>.iterator>
-m_staleAt : TimePoint
-m_dataPacket : shared_ptr<Data> const
-m_isUnsolicited : bool
-m_nameWithDigest : Name
-m_digest : ConstBufferPtr
-m_layerIterators : LayerIterators

+Entry()
+release() : void
+getName() : Name &
+isUnsolicited() : bool
+getStaleTime() : TimePoint &
+getData() : Data &
+setData(data : Data &, isUnsolicited : bool) : void
+setData(data : Data &, isUnsolicited : bool, digest : ConstBufferPtr &) : void
+updateStaleTime() : void
+getDigest() : ConstBufferPtr &
+setIterator(layer : int, layerIterator : mapped_type &) : void
+removeIterator(layer : int) : void
+getIterators() : LayerIterators &
-printIterators() : void

Entry

<<Typedef>>
CleanupIndex

Figure 6: CS data structure

The current CS implementation is illustrated in Figure 6.

CS entry
The Data packet, along with other necessary fields, are stored in a CS entry.
Each entry contains:

• the Data packet

• whether the Data packet is unsolicited

• the timestamp at which the cached Data becomes stale

CS
To support the prioritized FIFO cache replacement policy, the CS maintains a multi-index container [11] in order to keep

pointers to the Data packets in a particular order. Note that this multi-index container is completely separated from the
skip list container, which indexes Content Store entries by name.

15

3.3 Interest Table (PIT) 3 TABLES

The container (Cs::CleanupIndex) currently supports indexing of unsolicited Data packets, indexing by packet staleness
and indexing by packet arrival time. Calculation of the indexes is performed in the container during the Data packet insertion
(Cs::insert) in the Content Store.

Eviction (Cs::evictItem) is performed during the insertion when the CS is full, and when the capacity is decreased by
management. We decided not to perform periodical cleanups, because its CPU overhead causes jitter in packet forwarding.

In the current version of NFD, cache replacement policy can be modified by adding different indexes in the Cs::CleanupIndex
container (refer to Boost.multiIndex documentation [11]) and implementing additional logic in Cs::evictItem function.

3.3 Interest Table (PIT)

The Interest Table (PIT) keeps track of Interests forwarded upstream toward content source(s), so that Data can be sent
downstream to its requester(s) [8]. It also contains recently satisfied Interests for loop detection and measurements purposes.
This data structure is called “pending Interest table” in NDN literatures; however, NFD’s PIT contains both pending Interests
and recently satisfied Interests, so “Interest table” is a more accurate term, but the abbreviation “PIT” is kept.

PIT is a collection of PIT entries, used only by forwarding (Section 4). The structure and semantics of PIT entry, and how
it’s used by forwarding are described in Section 3.3.1. The structure and algorithms of PIT, and how it’s used by forwarding
are described in Section 3.3.2. The implementation of PIT algorithms is discussed in Section 3.7.

3.3.1 PIT Entry

Figure 7 shows the PIT, PIT entries, in-records, out-records, and their relations.

PIT

PIT entry

InterestPK

Nonce list

in-record

facePK

lastNonce

lastRenewed

out-record

facePK

lastNonce

lastRenewed

Interest

Figure 7: PIT and related entities

PIT entry
A PIT entry (nfd::pit::Entry) represents either a pending Interest or a recently satisfied Interest. Two Interest packets

are similar if they have same Name and same Selectors [1]. Multiple similar Interests share the same PIT entry.
Each PIT entry is identified by an Interest. All fields in this Interest, except Name and Selectors, are insignificant.
Each PIT entry contains a collection of in-records, a collection of out-records, and two timers, described below. In addition,

forwarding strategy is allowed to store arbitrary information on PIT entry, in-records, and out-records (Section 5.1.3).

In record
An in-record (nfd::pit::InRecord) represents a downstream face for the Interest. A downstream face is a requester

for the content: Interest comes from downstream, and Data goes to downstream.
The in-record stores:

• a reference to the face

16

3.4 Dead Nonce List 3 TABLES

• the Nonce in the last Interest packet from this face

• the timestamp on which the last Interest packet from this face arrives

• the last Interest packet

An in-record is inserted or updated by incoming Interest pipeline (Section 4.2.1). All in-records are deleted by incoming
Data pipeline (Section 4.3.1) when a pending Interest is satisfied.

An in-record expires when InterestLifetime has elapsed after the last Interest packet arrives. A PIT entry expires when
all in-records expire. A PIT entry is said to be pending if it contains at least one unexpired in-record.

Out record
An out-record (nfd::pit::OutRecord) represents an upstream face for the Interest. An upstream face is a potential

content source: Interest is forwarded to upstream, and Data comes from upstream.
The out-record stores:

• a reference to the face

• the Nonce in the last Interest packet to this face

• the timestamp on which the last Interest packet to this face is sent

An out-record is inserted or updated by outgoing Interest pipeline (Section 4.2.3). An out-record is deleted by incoming
Data pipeline (Section 4.3.1) when a pending Interest is satisfied by a Data from that face.

An out-record expires when InterestLifetime has elapsed after the last Interest packet is sent.

Timers
There are two timers on a PIT entry, used by forwarding pipelines (Section 4):

• unsatisfy timer fires when the PIT entry expires (Section 4.2.1)

• straggler timer fires when the PIT entry can be deleted because it has been satisfied or rejected, and is no longer needed
for loop detection and measurements purposes (Section 4.3.1)

3.3.2 PIT

The PIT (nfd::Pit) is a table containing PIT entries, indexed by <Name,Selectors>tuple. The usual insert and delete
operations are supported. Pit::insert method first looks for a PIT entry for similar Interest, and inserts one only if it does
not already exist; there is no separate method for exact match, because forwarding does not need to determine the existence
of a PIT entry without inserting it. The PIT is not iterable, because this is not needed by forwarding.

Data Match algorithm (Pit::findAllDataMatches) finds all Interests that a Data packet can satisfy. It takes a Data
packet as input parameter. The return value is a collection of PIT entries that can be satisfied by this Data packet. This
algorithm does not delete any PIT entry.

3.4 Dead Nonce List

The Dead Nonce List is a data structure that supplements PIT for loop detection purposes.
In August 2014, we found a persistent loop problem when InterestLifetime is short (Bug 1953). Loop detection previously

only uses the Nonces stored in PIT entry. If an Interest is unsatisfied within InterestLifetime, the PIT entry is deleted at the
end of InterestLifetime. When the network contains a cycle whose delay is longer than InterestLifetime, a looping Interest
around this cycle cannot be detected because the PIT entry is gone before the Interest loops back.

A naive solution to this persistent loop problem is to keep the PIT entry for longer duration. However, the memory
consumption of doing this is too high, because PIT entry contains many other things than the Nonce. Therefore, Dead
Nonce List is introduced to store Nonces ”dead” from the PIT.

The Dead Nonce List is a global container in NFD. Each entry in this container stores a tuple of Name and Nonce. The
existence of an entry can be queried efficiently. Entries are kept for a duration after which the Interest is unlikely to loop
back.

The structure and semantics of Dead Nonce List, and how it’s used by forwarding are described in Section 3.4.1. Sec-
tion 3.4.2 discusses how the capacity of Dead Nonce List is maintained.

17

3.5 Strategy Choice Table 3 TABLES

3.4.1 Structure, Semantics, and Usage

A tuple of Name and Nonce is added to Dead Nonce List (DeadNonceList::add) in incoming Data pipeline (Section 4.3.1)
and Interest finalize pipeline (Section 4.2.6) before out-records are deleted.

The Dead Nonce List is queried (DeadNonceList::has) in incoming Interest pipeline (Section 4.2.1). If an entry with
same Name and Nonce exists, the incoming Interest is a looping Interest.

The Dead Nonce List is a probabilistic data structure: each entry is stored as a 64-bit hash of the Name and Nonce. This
greatly reduces the memory consumption of the data structure. At the same time, there’s a non-zero probability of hash
collisions, which inevitably cause false positives: non-looping Interests are mistaken as looping Interests. Those false positives
are recoverable: the consumer can retransmit the Interest with a fresh Nonce, which most likely would yield a different hash
that doesn’t collide with an existing one. We believe the gain from memory savings outweighs the harm of false positives.

3.4.2 Capacity Maintenance

Entries are kept in Dead Nonce List for a configurable lifetime. The entry lifetime is a trade-off between effectiveness of
loop detection, memory consumption of the container, and probability of false positives. Longer entry lifetime improves the
effectiveness of loop detection, because a looping Interest can be detected only if it loops back before the entry is removed,
and longer lifetime allows detecting looping Interests in network cycles with longer delay. Longer entry lifetime causes more
entries to be stored, and therefore increases the memory consumption of the container; having more entries also means higher
probability of hash collisions and thus false positives. The default entry lifetime is set to 6 seconds.

A naive approach of entry lifetime enforcement is to keep a timestamp in each entry. This approach consumes too much
memory. Given that the Dead Nonce List is a probabilistic data structure, entry lifetime doesn’t need to be precise. Thus,
we index the container as a first-in-first-out queue, and approximate entry lifetime to the configured lifetime by adjusting
the capacity of the container.

It’s infeasible to statically configure the capacity of the container, because the frequency of adding entries is correlated
to Interest arrival rate, which cannot be accurately estimated by an operator. Therefore, we use the following algorithm to
dynamically adjust the capacity for expected entry lifetime L:

• At interval M , we add a special entry called a mark to the container. The mark doesn’t have a distinct type: it’s
an entry with a specific value, with the assumption that the hash function is non-invertible so that the probability of
colliding with a hash value computed from Name and Nonce is low.

• At interval M , we count the number of marks in the container, and remember the count. The order between adding a
mark and counting marks doesn’t matter, but this shall be consistent.

• At interval A, we look at recent counts. When the capacity of the container is optimal, there should be L/M marks in
the container at all times. If all recent counts are above L/M , the capacity is adjusted down. If all recent counts are
below L/M , the capacity is adjusted up.

In addition, there is a hard upper bound and lower bound of the capacity, to avoid memory overflow and to ensure correct
operations. When the capacity is adjusted down, to bound algorithm execution time, excess entries are not evicted all at
once, but are evicted in batches during future adding operations.

3.5 Strategy Choice Table

The Strategy Choice Table contains the forwarding strategy (Section 5) chosen for each namespace. This table is a new
addition to the NDN architecture. Theoretically, forwarding strategy is a program that is supposed to be stored in FIB
entries [8]. In practice, we find that it is more convenient to save the forwarding strategy in a separate table, instead of
storing it with FIB entry, for the following reasons:

• FIB entries come from RIB entries, which are managed by NFD RIB Daemon (Section 7). Storing the strategy in FIB
entries would require the RIB Daemon to create/update/remove strategies when it manipulates the FIB. This increases
the RIB Daemon’s complexity.

• FIB entry is automatically deleted when the last NextHop record is removed, including when the last upstream face
fails. However, we don’t want to lose the configured strategy.

• The granularity of strategy configuration is different from the granularity of RIB entry or FIB entry. Having both in
the same table makes inheritance handling more complex.

The structure, semantics, and algorithms of Strategy Choice Table is outlined in Section 3.5.1. How Strategy Choice Table
is used by rest of NFD is described in Section 3.5.2. The implementation of Strategy Choice Table algorithms is discussed in
Section 3.7.

18

3.6 Measurements Table 3 TABLES

3.5.1 Structure and Semantics

Strategy Choice entry
A Strategy Choice entry (nfd::strategy choice::Entry) contains a Name prefix, and the Name of a forwarding strategy

chosen for this namespace. Currently, there is no parameters.
At runtime, a reference to the instantiation of the strategy program is also linked from the Strategy Choice entry.

Strategy Choice Table
The Strategy Choice Table (nfd::StrategyChoice) is a collection of Strategy Choice entries—associations of namespaces

with specific strategies. There could be only one strategy set per namespace, but sub-namespaces can have their own choices
for the strategy.

Currently, the Strategy Choice Table also maintains a collection of the available (“installed”) strategies and is consulted
by the StrategyChoice manager (see Section 6.1.3) whenever a control command is received. Therefore, in order for any
new custom strategy to be known to NFD and be used in the namespace-strategy association, it should be “installed” using
StrategyChoice::install method. Note that each installed strategy should have its own unique name, otherwise an runtim
error will be generated.

In order to guarantee that every namespace has a strategy, NFD always insert the root entry for / namespace to the
Strategy Choice Table during initialization. The strategy chosen for this entry, called the default strategy, is defined by the
hard-coded makeDefaultStrategy free function in daemon/fw/available-strategies.cpp. The default strategy can be
replaced, but the root entry in Strategy Choice Table can never be deleted.

The insertion operation (StrategyChoice::insert) inserts a Strategy Choice entry, or updates the chosen strategy on
an existing entry. The new strategy must have been installed.

The deletion operation (StrategyChoice::erase) deletes a Strategy Choice entry. The namespace covered by the deletes
would inherit the strategy defined on the parent namespace. It is disallowed to delete the root entry.

The usual exact match operation is supported. Strategy Choice entries can be iterated over in a forward iterator, in
unspecified order.

Find Effective Strategy algorithm (StrategyChoice::findEffectiveStrategy) finds a strategy that should be used
to forward an Interest. The effective strategy for the namespace can be defined as follows:

• If the namespace is explicitly associated with the strategy, then this is the effective strategy

• Otherwise, the first parent namespace for which strategy was explicitly set defines the effective strategy.

The find effective strategy algorithm takes a Name, a PIT entry, or a measurements entry as input parameter.2 The
return value of the algorithm is a forwarding strategy that is found by longest prefix match using the supplied name. This
return value is always a valid entry, because every namespace must have a strategy.

3.5.2 Usage

The Strategy Choice Table is updated only through management protocol. Strategy Choice manager (Section 6.1.3) is directly
responsible for updating the Strategy Choice Table.

The Strategy Choice is expected to be stable, as strategies are expected to be manually chosen by the local NFD operator
(either user for personal computers or system administrators for the network routers).

The effective strategy search algorithm is used by forwarding in incoming Interest pipeline (Section 4.2.1), Interest
unsatisfied pipeline (Section 4.2.5), and incoming Data pipeline (Section 4.3.1). It is called at most twice per incoming
packet.

3.6 Measurements Table

The Measurements Table is used by forwarding strategies to store measurements information regarding a name prefix.
Strategy can store arbitrary information in PIT and in Measurements (Section 5.1.3). The Measurements Table is indexed
by namespace, so it’s suitable to store information that is associated with a namespace, but not specific to an Interest.

The structure and algorithms of Measurements Table is outlined in Section 3.6.1. How Measurements Table is used by
rest of NFD is described in Section 3.6.2. The implementation of Measurements Table algorithms is discussed in Section 3.7.

2Since the strategy choices can change during the runtime, the last two parameters are necessary to ensure correctness of strategy-specific
information stored in PIT and measurement. For more detail, see Section 5.1.3.

19

3.7 NameTree 3 TABLES

3.6.1 Structure

Measurements entry
A Measurements entry (nfd::measurements::Entry) contains a Name, and APIs for strategy to store and retrieve

arbitrary information (nfd::StrategyInfoHost, Section 5.1.3). It’s possible to add some standard metrics that can be
shared among strategies, such as round trip time, delay, jitter, etc. However, we feel that every strategy has its unique needs,
and adding those standard metrics would become unnecessary overhead if the effective strategy is not making use of them.
Therefore, currently the Measurements entry does not contain standard metrics.

Measurements Table
The Measurements Table (nfd::Measurements) is a collection of Measurements entries.
Measurements::get method finds or inserts a Measurements entry. The parameter is a Name, a FIB entry, or a PIT

entry. Because of how Measurements table is implemented, it’s more efficient to pass in a FIB entry or a PIT entry, than to
use a Name. Measurements::getParent method finds or inserts a Measurements entry of the parent namespace.

Unlike other tables, there is no delete operation. Instead, each entry has limited lifetime, and is automatically deleted
when its lifetime is over. Strategy must call Measurements::extendLifetime to request extending the lifetime of an entry.

Exact match and longest prefix match lookups are supported for retrieving existing entries.

3.6.2 Usage

Measurements Table is solely used by forwarding strategy. How many entries are in the Measurements Table and how often
they are accessed are determined by forwarding strategies. A well-written forwarding strategy stores no more than O(log(N))
entries, and performs no more than O(N) lookups, where N is the number of incoming packets plus the number of outgoing
packets.

Measurements Accessor
Recall that NFD has per-namespace strategy choice (Section 3.5), each forwarding strategy is allowed to access the

portion of Measurements Table that are under the namespaces managed by that strategy. This restriction is enforced by a
Measurements Accessor.

A Measurements Accessor (nfd::MeasurementsAccessor) is a proxy for a strategy to access the Measurements Table. Its
APIs are similar to the Measurements Table. Before returning any Measurements entry, the accessor looks up the Strategy
Choice Table (Section 3.5) to confirm whether the requesting strategy owns the Measurements entry. If an access violation
is detected, null is returned instead of the entry.

3.7 NameTree

The NameTree is a common index structure for FIB (Section 3.1), PIT (Section 3.3, Strategy Choice Table (Section 3.5,
and Measurements Table (Section 3.6). It is feasible to use a common index, because there are much commonality in the
index of these four tables: FIB, StrategyChoice, and Measurements are all indexed by Name, and PIT is indexed by Name
and Selectors [1]. It is beneficial to use a common index, because lookups on these four tables are often related (eg. FIB
longest prefix match is invoked in incoming Interest pipeline (Section 4.2.1) after inserting a PIT entry), and using a common
index can reduce the number of index lookups during packet processing; the amount of memory used by the index(es) is also
reduced.

NameTree data structure is introduced in Section 3.7.1. NameTree operations and algorithms are described in Sec-
tion 3.7.2. Section 3.7.3 describes how NameTree can help reducing number of index lookups by adding shortcuts between
tables.

3.7.1 Structure

The conceptual NameTree data structure is shown in Figure 8. The NameTree is a collection of NameTree entries, indexed
by Name. FIB, PIT, Strategy Choice, and Measurements entries are attached onto NameTree entry.

NameTree entry
A NameTree entry (nfd::name tree::Entry) contains:

• the Name prefix

• a pointer to the parent entry

20

3.7 NameTree 3 TABLES

NameTree

name_tree

Node

-m_hash : size_t
-m_prefix : Name
-m_parent : shared_ptr<Entry>
-m_children : vector<shared_ptr<Entry>>
-m_fibEntry : shared_ptr<Entry>
-m_pitEntries : vector<shared_ptr<Entry>>
-m_measurementsEntry : shared_ptr<Entry>
-m_strategyChoiceEntry : shared_ptr<Entry>

Entry

+m_prev-m_node+m_next

Pit

-m_nameTree

StrategyChoice

-m_nameTree

Fib

-m_nameTree

Measurements

-m_nameTree

Figure 8: NameTree overview

• a list of pointers to child entries

• zero or one FIB entry

• zero or more PIT entries

• zero or one Strategy Choice entry

• zero or one Measurements entry

NameTree entries form a tree structure via parent and children pointers.

NameTree hash table
In addition to the tree structure, the NameTree also has a hash table to enable faster lookups.

m_prev = null
m_next = ...

*NTE = ...

/a
...

m_prev = null
m_next = null

*NTE = ...

/a/b/c
...

m_prev = null
m_next = null

*NTE = ...

/a/b
...

...

m_prev = null
m_next = null

*NTE = null

m_prev = null
m_next = null

*NTE = null

m_prev =...
m_next = null

*NTE

/a/b/c/d
...

Hash collisions
are resolved via
chaining

parent

parent

parent

NameTree Node

NameTree Entry

Figure 9: NameTree hash table data structure

We decide to implement the hash table from scratch, rather than using an existing library, so that we can have better
control for performance tuning. The hash table data structure is shown in Figure 9.

21

3.7 NameTree 3 TABLES

Hash values are computed using CityHash [12]; this hash function is chosen because it is fast. For a given Name prefix,
hash is computed over the TLV representation of the Name, and the hash value is mapped to one of the buckets. Hash
collisions are resolved via chaining: if multiple Names are mapped to the same bucket, all these entries are chained in that
bucket through a singly linked list.

As the number of stored NameTree entries changes, the hash table is automatically resized. During a resize operation, the
new number of buckets is computed; this number is a trade-off between wasted memory of empty buckets and time overhead
of chaining. Every NameTree entry is then rehashed and moved to a bucket in the new hashtable.

To reduce the overhead of resize operation, the hash value of a Name is stored in the NameTree entry. We also introduce
a NameTree Node type. A Node is stored in the bucket, and contains a pointer to an entry, and a pointer to the next Node
in the chain. The resize operation only needs to move Nodes (which are smaller than entries), and do not need to change
entries.

In Figure 9, name prefixes /a, /a/b, /a/b/c, /a/b/c/d are stored. The parent pointers shown on the figure show the
relationship between these four name prefixes. As shown in the figure, there is a hash collision between /a and /a/b/c/d,
and the hash collision is resolved via chaining.

3.7.2 Operations and Algorithms

Insertion and Deletion operations
The lookup/insertion operation (NameTree::lookup) finds or inserts an entry for a given Name. To maintain the tree

structure, ancestor entries are inserted if necessary. This operation is called when a FIB/PIT/StrategyChoice/Measurements
entry is being inserted.

The conditional deletion operation (NameTree::eraseEntryIfEmpty) deletes an entry if no FIB/PIT/StrategyChoice/
Measurements entry is stored on it, and it has no children; ancestors of the deleted entry are also deleted if they meet the
same requirements. This operation is called when a FIB/PIT/StrategyChoice/Measurements entry is being deleted.

Matching algorithms
The exact match algorithm (NameTree::findExactMatch) finds the entry with a specified Name, or returns null if such

entry does not exist.
The longest prefix match algoritm (NameTree::findLongestPrefixMatch) finds the entry of longest prefix match of a

specified Name, filtered by an optional EntrySelector. An EntrySelector is a predicate that decides whether an entry can be
accepted (returned). This algorithm is implemented as: start from looking up the full Name in the hash table; if no NameTree
entry exists or it’s rejected by the predicate, remove the last Name component and lookup again, until an acceptable NameTree
entry is found. This algorithm is called by FIB longest prefix match algorithm (Section 3.1.1), with a predicate that accepts
a NameTree entry only if it contains a FIB entry. This algorithm is called by StrategyChoice find effective strategy algorithm
(Section 3.5.1), with a predicate that accepts a NameTree entry only if it contains a StrategyChoice entry.

The all match algorithm (NameTree::findAllMatches) enumerates all entries that are prefixes of a given Name, filtered
by an optional EntrySelector. This algorithm is implemented as: perform a longest prefix match first; remove the last Name
component, until reaching the root entry. This algorithm is called by PIT data match algorithm (Section 3.3.2).

Enumeration algorithms
The full enumeration algorithm (NameTree::fullEnumerate) enumerates all entries, filtered by an optional EntrySe-

lector. This algorithm is used by FIB enumeration and Strategy Choice enumeration.
The partial enumeration algorithm (NameTree::partialEnumerate) enumerates all entries under a specified Name

prefix, filtered by an optional EntrySubTreeSelector. An EntrySelector is a double-predicate that decides whether an entry can
be accepted, and whether its children shall be visited. This algorithm is used during runtime strategy change (Section 5.1.3)
to clear StrategyInfo items under a namespace changing ownership.

3.7.3 Shortcuts

One benefit of the NameTree is that it can reduce the number of index lookups during packet forwarding. To achieve this
benefit, one method is to let forwarding pipelines perform a NameTree lookup explicitly, and use fields of the NameTree
entry. However, this is not ideal because NameTree is introduced to improve the performance of four tables, and it should
change the procedure of forwarding pipelines.

To reduce the number of index lookups, but still hide NameTree away from forwarding pipelines, we add shortcuts
between tables. Each FIB/PIT/StrategyChoice/Measurements entry contains a pointer to the corresponding NameTree
entry; the NameTree entry contains pointers to FIB/PIT/StrategyChoice/Measurements entries and the parent NameTree
entry. Therefore, for example, given a PIT entry, one can retrieve the corresponding NameTree entry in constant time by

22

3.7 NameTree 3 TABLES

following the pointer, and then retrieve or attach a Measurements entry via the NameTree entry, or find longest prefix match
FIB entry by following pointers to parents.

NameTree entry is still exposed to forwarding if we take this approach. To also hide NameTree entry away, we introduce
new overloads to table algorithms that take a relevant table entry in place of a Name. These overloads include:

• Fib::findLongestPrefixMatch can accept PIT entry or Measurements entry in place of a Name

• StrategyChoice::findEffectiveStrategy can accept PIT entry or Measurements entry in place of a Name

• Measurements::get can accept FIB entry or PIT entry in place of a Name

An overload that takes a table entry is generally more efficient than the overload taking a Name. Forwarding can take
advantage of reduced index lookups by using those overloads, but does not need to deal with NameTree entry directly.

To support these overloads, NameTree provides NameTree::get method, which returns the NameTree entry linked from
a FIB/PIT/StrategyChoice/Measurements entry. This method allows one table to retrieve the corresponding NameTree
from an entry of another table, without knowning the internal structure of that entry. It also permits a table to depart from
NameTree in the future without breaking other code: suppose someday PIT is no longer based on NameTree, NameTree::get
could perform a lookup using Interest Name in the PIT entry; Fib::findLongestPrefixMatch can still accept PIT entries,
although it’s not more efficient than using a Name.

23

4 FORWARDING

4 Forwarding

The packet processing in NFD consists of forwarding pipelines described in this section and forwarding strategies
described in Section 5. A forwarding pipeline (or just pipeline) is a series of steps that operates on a packet or a PIT
entry, which is triggered by the specific event: reception of the Interest, detecting that the received Interest was looped,
when an Interest is ready to be forwarded out of the Face, etc. A forwarding strategy (or just strategy) is a decision
maker about Interest forwarding, which is attached at the end or beginning of the pipelines. In other words, the strategy
makes decisions whether, when, and where to forward an Interest, while the pipelines supply the strategy the Interests and
supporting information to make these decisions.

Figure 10 shows the overall workflow of forwarding pipelines and strategy, where blue boxes represent pipelines and white
boxes represent decision points of the strategy.

incoming
Interest

incoming
Data

outgoing
Interest

outgoing
Data

after receive
Interest

Interest
reject

Interest
unsatisfied

Interest
loop

Data
unsolicited

before satisfy
Interest

before expire
Interest

unsatisfy
timer

straggler
timer

Interest
finalize

Figure 10: Pipelines and strategy: overall workflow

4.1 Forwarding Pipelines

Pipelines operate on network layer packets (Interest or Data) and each packet is passed from one pipeline to another (in some
cases through strategy decision points) until all processing is finished. Processing within pipelines uses PIT, ContentStore,
FIB, and StrategyChoice tables, however for the last two pipelines have only read-only access (FIB and StrategyChoice are
managed by the corresponding managers and are not directly affected by the data plane traffic). In addition to that, pipelines
have read access to FaceTable (the table that keeps track all active Faces in the forwarder) and are allowed to actually send
packets through Faces.

The processing of Interest and Data packets in NDN is quite different (the one serves as a request, while other satisfies
pending requests), we separate forwarding pipelines into Interest processing path and Data processing path, described
in the following sections.

4.2 Interest Processing Path

NFD separates Interest processing into the following pipelines:

• incoming Interest: processing of incoming Interests

• Interest loop: processing incoming looped Interests

• outgoing Interest: preparation and sending out Interests

• Interest reject: processing PIT entries that are rejected by the strategy

• Interest unsatisfied: processing PIT entries that are unsatisfied before all downstreams timeout

• Interest finalize: deleting PIT entry

24

4.2 Interest Processing Path 4 FORWARDING

4.2.1 Incoming Interest Pipeline

The incoming Interest pipeline is implemented in Forwarder::onIncomingInterest method and is entered from Forwarder::

onInterest method, which is triggered by Face::onReceiveInterest event emitter (see Section 9.5 for more detail about
EventEmitter). The input parameters to the incoming interest pipeline include the newly received Interest packet and
reference to the Face on which this Interest packet was received.

This pipeline includes the following steps, summarized in Figure 11:

CS
lookup

outgoing
Data

PIT insert

cancel unsatisfy
& straggler timer

FIB lookup

dispatch to
strategy

Y

receive Interest

detect
duplicate

Nonce

Interest
loopY

insert InRecord
is

pending?

Y

violates
/localhost?

Y
(drop)

set PIT
unsatisfy timer

Interest
unsatisfied

timer event

set PIT
straggler timer

timer event

Interest
finalize

N

N

N

N

Figure 11: Incoming Interest pipeline

• The first step after entering the incoming Interest pipeline is check for /localhost scope [9] violation. In particular,
an Interest from a non-local Face is not allowed to have a name that starts with /localhost prefix, as it is reserved for
localhost communication. If violation is detected, such Interest is immediately dropped and no further processing on
the dropped Interest is performed. This check guards against malicious senders; a compliant forwarder will never send
a /localhost Interest to a non-local Face. Note that /localhop scope is not checked here, because its scope rules do
not restrict incoming Interests.

• The next step is looking up existing or creating a new PIT entry, using name and selectors specified in the Interest
packet. As of this moment, PIT entry becomes a processing subject of the incoming Interest and following pipelines.
Note that NFD creates PIT entry before performing ContentStore lookup. The main reason for this decision is to reduce
lookup overhead: ContentStore is most likely be significantly larger than PIT and can incur significant overhead, since,
as described below, ContentStore lookup can be skipped in certain cases.

• Before the incoming Interest is processed any further, its Nonce is checked against the Nonces in the PIT entry and
the Dead Nonce List (Section 3.4). If a match is found, the incoming Interest is considered a duplicate due to either
loop or multi-path arrival, and is given to Interest loop pipeline for further processing (Section 4.2.2). If a match is not
found, processing continues.

• Next, the unsatisfy timer (described below) and straggler timer (Section 4.2.4) on the PIT entry are cancelled, because
a new valid Interest is arriving for the PIT entry, so that the lifetime of the PIT entry needs to be extended. The
timers could get reset later in the Interest processing path, e.g., if ContentStore will be able to satisfy the Interest.

• The pipeline then tests whether the Interest is pending, i.e., the PIT entry has already another in-record from the same
or other incoming Face. Recall that NFD’s PIT entry can represent not only pending Interest but also recently satisfied
Interest (Section 3.3.1), this test is equivalent to “having a PIT entry” in CCN Node Model [8], whose PIT contains
only pending Interests.

25

4.2 Interest Processing Path 4 FORWARDING

• If the Interest is not pending, the Interest is matched against the ContentStore (Cs::find, Section 3.2.1). Otherwise,
CS lookup is unnecessary because a pending Interest implies that a previous CS returns no match. If a match is found,
straggler timer (Section 4.2.4) is set on the Interest because because it’s being satisfied, the best matching Data is
passed to outgoing Data pipeline (Section 4.3.3), and the Interest processing is completed.

• At this point, the Interest is valid and cannot be satisified by cached Data, so it needs to be forwarded somewhere else.
Therefore, an in-record for the Interest and its incoming Face is created in the PIT entry or simply gets refreshed if it
was already there (e.g., the Interest is being re-expressed by the consumer). The expiration value of the in-record is
directly controlled by the InterestLifetime fields in the Interest packet. If InterestLifetime is omitted, the default
value of 4 seconds is used.

Note that NFD defers to the strategy the decision on whether to forward again a similar Interest (same Name and
Selectors, but different Nonce). All currently implemented strategies will suppress forwarding of Interests if there is at
least one active out-record (see Section 5.1.1 for more detail).

• After PIT entry is updated, the pipeline sets the unsatisfy timer for the PIT entry. This timer expires when all
InRecords in the PIT entry expire. Expiration of the unsatisfy timer triggers entering the Interest unsatisfied pipeline
(Section 4.2.5).

• FIB is looked up using Interest Name (Section 3.1.1, Longest Prefix Match algorithm). This needs to be in the pipeline,
because strategy does not have direct access to the FIB. Note that FIB guarantees that Longest Prefix Match would
return a valid FIB entry. However, a FIB entry may contain empty set of NextHop records, which could effectively
result (but, strictly speaking, is not required to happen) in rejecting of the Interest by the strategy.

• The final step of this pipeline is determining which strategy is responsible to process Interests (i.e., Interest’s name is
checked against StrategyChoice table using Find Effective Strategy algorithm, see Section 3.5.1). The selected strategy
is then triggered for the after receive Interest action with the PIT entry, incoming Interest packet, and FIB entry
(Section 5.1.1).

4.2.2 Interest Loop Pipeline

This pipeline is implemented in Forwarder::onInterestLoop method and is entered from incoming Interest pipeline (Sec-
tion 4.2.1) when an Interest loop is detected. The input parameters to this pipeline include an Interest packet, its incoming
Face, and the PIT entry.

In the current implementation, this pipeline simply drops the Interest. In the future, this pipeline may generate some
form of explicit notifications (e.g., Interest NACKs [13]) to the downstream to inform about the detected loop.

4.2.3 Outgoing Interest Pipeline

The outgoing Interest pipeline is implemented in Forwarder::onOutgoingInterest method and is entered from Strategy::

sendInterest method which handles send Interest action for strategy (Section 5.1.2). The input parameters to this pipeline
include a PIT entry, an outgoing Face, and a wantNewNonce flag. Note that the Interest packet is not a parameter when
entering the pipeline. The pipeline steps either use PIT entry directly to perform checks, or obtain reference to an Interest
stored inside the PIT entry.

This pipeline includes the following steps, summarized in Figure 12:

insert
OutRecord

pick Interest send Interest

violates
/localhost?

Y

(drop)

violates
/localhop?

(drop)

Y

N N

Figure 12: Outgoing Interest pipeline

• The initial step is to check for potential violations of /localhost and /localhop scopes [9]:

26

4.2 Interest Processing Path 4 FORWARDING

– Interest packets that start with /localhost prefix cannot be send out to a non-local Faces

– Interest packets that start with /localhop prefix can be send out to a non-local Faces only if PIT entry has at
least one in-record that represents a local Face.

This check guards against a careless strategy and guarantees properties of /localhost and /localhop name-based
scope control in NFD.

• On the next step an Interest packet is selected among the recorded Interests inside in-records in the PIT entry. This is
necessary because Interests in different in-records can have different guiders [1] (e.g. InterestLifetime). The current
implementation always selects the last incoming Interest. However, this simple selection criteria can change in the
future releases after we understand better the effects of guiders.

• If the strategy indicates a new nonce is wanted (the wantNewNonce flag), the Interest is copied, and a random nonce is
set onto the copy.

This flag is necessary since the strategy may want to retransmit the pending Interest. During the retransmission, the
nonce must be changed, otherwise the upstream nodes may falsely detect Interest loops and prevent the retransmitted
Interest from being processed.

• The next step is to create in the PIT entry an out-record for the Interest and insert entry for the specified outgoing
Face. If an out-record and/or an entry for the outgoing Face already exist, it will get refreshed by the value of
InterestLifetime in the selected Interest packet (if InterestLifetime in Interest packet is omitted, value of 4
seconds is used).

• Finally, the Interest is forwarded via the Face.

4.2.4 Interest Reject Pipeline

This pipeline is implemented in Forwarder::onInterestReject method and is entered from Strategy::rejectPendingIn-

terest method which handles reject pending Interest action for strategy (Section 5.1.2). The input parameters to this
pipeline include a PIT entry.

The pipeline cancels the unsatisfy timer on the PIT entry (set by incoming Interest pipeline), and then sets the straggler
timer. After the straggler timer expires, Interest finalize pipline (Section 4.2.6) is entered.

The purpose of the straggler timer is to keep PIT entry alive for a short period of time in order to facilitate duplicate
Interest detection and to collect data plane measurements. For duplicate Interest detection this is necessary, since NFD uses
the Nonces stored inside PIT entry to remember recently seen Interest Nonces. For data plane measurement is it desirable
to obtain as much data points as possible, i.e., if several incoming Data packets can satisfy the pending Interest, all of these
Data packets should be used to measure performance of the data plane. If PIT entry is deleted right away, NFD may fail to
properly detect Interest loop and valuable measurements can be lost.

We chose 100 ms as a static value for the straggler timer, as we believe it gives good tradeoff between the functionality and
memory overhead: for loop detection purposes, this time is enough for most packets to go around a cycle; for measurement
purposes, a working path that is more than 100 ms slower than the best path is usually not useful. If necessary, this value
can be adjusted in daemon/fw/forwarder.cpp file.

4.2.5 Interest Unsatisfied Pipeline

This pipeline is implemented in Forwarder::onInterestUnsatisfied method and is entered from the unsatisfy timer (Sec-
tion 4.2.1) when InterestLifetime expires for all downstreams. The input parameters to this pipeline include a PIT entry.

The processing steps in the Interest unsatisfied pipeline include:

• Determining the strategy that is responsible for the PIT entry using Find Effective Strategy algorithm on the Strate-
gyChoice table (see Section 3.5.1).

• Invoking before expire Interest action of the effective strategy with the PIT entry as the input parameter (Section 5.1.1).

• Entering Interest finalize pipeline (Section 4.2.6).

Note that at this stage there is no need to keep PIT entry alive for any time longer, as it is the case in the Interest
reject pipeline (Section 4.2.4). Expiration of the unsatisfy timer implies that PIT entry was already alive for substantial
period of time and all Interest loops have been already prevented and no matching Data packet has been received.

27

4.3 Data Processing Path 4 FORWARDING

4.2.6 Interest Finalize Pipeline

This pipeline is implemented in Forwarder::onInterestFinalize method and is entered from the straggler timer (Sec-
tion 4.2.4) or Interest unsatisfied pipeline (Section 4.2.5).

The pipeline first determines whether Nonces recorded in the PIT entry need to be inserted to the Dead Nonce List
(Section 3.4). The Dead Nonce List is a global data structure designed to detect looping Interests, and we want to insert as
few Nonces as possible to keep its size down. Only outgoing Nonces (in out-records) need to be inserted, because an incoming
Nonce that has never been sent out won’t loop back.

We can further take chances on the ContentStore: if the PIT entry is satisfied, and the ContentStore can satisfy a looping
Interest (thus stop the loop) during Dead Nonce List entry lifetime if Data packet isn’t evicted, Nonces in this PIT entry
don’t need to be inserted. The ContentStore is believed to be able to satisfy a looping Interest, if the Interest does not have
MustBeFresh selector, or the cached Data’s FreshnessPeriod is no less than Dead Nonce List entry lifetime.

If it’s determined that Nonces in the PIT entry should be inserted to the Dead Nonce List, tuples on Name and Nonce
are added to the Dead Nonce List (Section 3.4.1).

Finally, the PIT entry is removed from PIT.

4.3 Data Processing Path

Data processing in NFD is split into these pipelines:

• incoming Data: processing of incoming Data packets

• Data unsolicited: processing of incoming unsolicited Data packets

• outgoing Data: preparation and sending out Data packets

4.3.1 Incoming Data Pipeline

This pipeline is implemented in Forwarder::onIncomingData method and is entered from Forwarder::onData method,
which is triggered by Face::onReceiveData event emitter. The input parameters to this pipeline include a Data packet and
its incoming Face.

This pipeline includes the following steps, summarized in Figure 13:

PIT
match

receive Data

Y
CS insert

outgoing
Data

cancel unsatisfy
& straggler timer

mark PIT
satisfied

set PIT
straggler timer

foreach
PIT entry

foreach
pending
downstream

Data
unsolicited

timer event

violates
/localhost?

Y
(drop)

invoke PIT satisfy
callback

Interest
finalize

Dead Nonce
List insert

need Dead
Nonce List

insert?

Y

N

N

N

Figure 13: Incoming Data pipeline

• Similar to the incoming Interest pipeline, the first step in the incoming Data pipeline is to check the Data packet for
violation of /localhost scope [9]. If the Data comes from a non-local Face, but the name begins with /localhost

prefix, the scope is violated, Data packet is dropped, and further processing is stopped.

28

4.3 Data Processing Path 4 FORWARDING

This check guards against malicious senders; a compliant forwarder will never send a /localhost Data to a non-local
Face. Note that /localhop scope is not checked here, because its scope rules do not restrict incoming Data.

• After name-based scope constraint is checked, the Data packet is matched against the PIT using Data Match algorithm
(Section 3.3.2). If no matching PIT entry is found, the Data is unsolicited, and is given to Data unsolicited pipeline
(Section 4.3.2).

• If one or more matching PIT entries are found, the Data is inserted to ContentStore. Note that even if the pipeline
inserts the Data to the ContentStore, whether it is stored and how long it stays in the ContentStore is determined by
ContentStore admission and replacement policy.3

• The next step is to cancel the unsatisfy timer (Section 4.2.1) and straggler timer (Section 4.2.4) for each found PIT
entry, because the pending Interest is now getting satisfied.

• Next, the effective strategy responsible for the PIT entry is determined using Find Effective Strategy algorithm (Sec-
tion 3.5.1). The selected strategy is then triggered for the before satisfy Interest action with the PIT entry, the Data
packet, and its incoming Face (Section 5.1.1).

• The Nonce on the PIT out-record corresponding to the incoming Face of the Data is inserted to the Dead Nonce List
(Section 3.4), if it’s deemed necessary (Section 4.2.6). This step is necessary because the next step would delete the
out-record and the outgoing Nonce would be lost.

• The PIT entry is then marked satisfied by deleting all in-records, and the out-record corresponding to the incoming
Face of the Data.

• The straggler timer (Section 4.2.4) is then set on the PIT entry.

• Finally, for each pending downstream except the incoming Face of this Data packet, outgoing Data pipeline (Sec-
tion 4.3.3) is entered with the Data packet and the downstream Face. Note that this happens only once for each
downstream, even if it appears in multiple PIT entries. To implement this, during the processing of matched PIT
entries as described above, NFD collects their pending downstreams into an unordered set, eliminating all potential
duplicates.

4.3.2 Data Unsolicited Pipeline

This pipeline is implemented in Forwarder::onDataUnsolicited method and is entered from the incoming Data pipeline
(Section 4.3.1) when a Data packet is found to be unsolicited. The input parameters to this pipeline include a Data packet,
and its incoming Face.

Generally, unsolicited Data needs to be dropped as it poses security risks to the forwarder. However, there are cases
when unsolicited Data packets needs to be accepted to the ContentStore. In particular, the current implementation allows
any unsolicited Data packet to be cached if this Data packet arrives from a local Face. This behavior supports a commonly
used approach in NDN applications to “pre-publish” Data packets, when future Interests are anticipated (e.g., when serving
segmented Data packets).

If it is desirable to cache unsolicited Data from non-local Faces, the implementation of Forwarder::onDataUnsolicited
needs to be updated to include the desired acceptance policies

4.3.3 Outgoing Data Pipeline

This pipeline is implemented in Forwarder::onOutgoingData method and pipeline is entered from incoming Interest pipeline
(Section 4.2.1) when a matching Data is found in ContentStore and from incoming Data pipeline (Section 4.3.1) when the
incoming Data matches one or more PIT entries. The input parameters to this pipeline include a Data packet, and the
outgoing Face.

This pipeline includes the following steps:

• The Data is first checked for /localhost scope [9]:

– Data packets that start with /localhost prefix cannot be send out to a non-local Faces.4

/localhop scope is not checked here, because its scope rules do not restrict outgoing Data.

3The current implementation has fixed “admit all” admission policy and “priority FIFO” as replacement policy, see Section 3.2.
4This check is only useful in a specific scenario (see NFD Bug 1644).

29

4.3 Data Processing Path 4 FORWARDING

• The next step is reseved for the traffic manager actions, such as to perform traffic shaping, etc. The current imple-
mentation does not include traffic manager implementation, but it is planned to be implemented in one of the next
releases.

• Finally, the Data packet is sent via the outgoing Face.

30

5 FORWARDING STRATEGY

5 Forwarding Strategy

As mentioned before, the forwarding strategy in NFD is a decision maker, deciding whether, when, and where to forward the
Interests. NFD features an abstract interface (strategy API), which provides the baseline for implementation of multiplicity
strategies, without the need of reimplementing full Interest processing pipeline. The main motivation for having multiple
strategies is that our experience with NDN application showed that there a single fixed strategy cannot fit the needs for
all applications. For example, some applications may require to multicast Interests to all available Faces to retrieve any
matching copy of the Data as soon as possible, while the other may want to retrieve Data only from locations pointed by the
routing system.

To provide the maximum flexibility, NFD allows per-namespace selection of the specific strategy, which is envisioned to
be performed by the NFD operator. This per-namespace strategy choice is recorded in StrategyChoice table (Section 3.5),
which is consulted in the forwarding pipelines when decision about Interest forwarding needs to be made. In addition to the
Interest forwarding decision points, strategy can also receive notifications when the forwarded Interests are getting satisfied
or timed out. Therefore, strategy presents a closed loop subsystem in NFD to control Interest forwarding.

Conceptually, a strategy can be considered a program, which is written for an abstract machine (strategy API, Section 5.1)
and determines how to forward Interests. All current NFD strategies are written in C++ and are built-in into the NFD
binary. However, future releases of NFD may allow custom strategies to be loaded at runtime and/or written in a scripting
language against the strategy API abstract machine. Therefore, we chose to identify the forwarding strategy by NDN name,
which can universally represent either a built-in strategy (Section 5.2) or, in the future, any external strategy program to be
fetched from the network.

Since the objective of NFD is to provide a framework for easy experimentation, the list of the provided build-in strategies
is in no way comprehensive and we encourage implementation and experimentation of new strategies. Section 5.3 provides
insights to decide when implementation of a new strategy may be appropriate and give step-by-step guidelines explaining
the process of developing new NFD strategies.

5.1 Strategy API

All NFD strategies are implemented as subclasses of nfd::Strategy base class, which provides the strategy API for inter-
action of the implemented strategy and the rest of NFD. This API is the only way a strategy can access NFD elements,
therefore available functionality in the strategy API determines what NFD strategy can or cannot do.

A strategy is invoked through one of the triggers (Section 5.1.1). The forwarding decision is made with actions (Sec-
tion 5.1.2). Strategies are also allowed to store information on certain table entries (Section 5.1.3).

5.1.1 Triggers

Triggers are entrypoints to the strategy program. A trigger is declared as a virtual method of nfd::Strategy class, and is
expected to be overridden by a subclass.

After Receive Interest Trigger
This trigger is declared as Strategy::afterReceiveInterest method. This method is pure virtual, which must be

overridden by a subclass.
When an Interest is received, passes necessary checks, and needs to be forwarded, Incoming Interest pipeline (Section 4.2.1)

invokes this trigger with the PIT entry, incoming Interest packet, and FIB entry. At that time, the following conditions hold
for the Interest:

• The Interest does not violate /localhost scope.

• The Interest is not looped.

• The Interest cannot be satisfied by ContentStore.

• The Interest is under a namespace managed by this strategy.

After being triggered, the strategy should decide whether and where to forward this Interest. If the strategy decides to
forward this Interest, it should invoke send Interest action at least once; it can do so either immediately or some time in
the future using a timer.5 If the strategy concludes that this Interest cannot be forwarded, it should invoke reject pending
Interest action, so that the PIT entry will be deleted shortly.

5Warning: although a strategy is allowed to invoke send Interest action via a timer, this forwarding may never happen in special cases. For
example, if while such a timer is pending an NFD operator updates the strategy on Interest’s namespace, the timer even will be cancelled and new
strategy may not decide to forward the Interest until after all out-records in the PIT entry expire.

31

5.2 Built-in Strategies 5 FORWARDING STRATEGY

Before Satisfy Interest Trigger
This trigger is declared as Strategy::beforeSatisfyInterest method. The base class provides a default implementation

that does nothing; a subclass can override this method if the strategy needs to be invoked for this trigger, e.g., to record data
plane measurement results for the pending Interest.

When a PIT entry is satisfied, before Data is sent to downstreams (if any), Incoming Data pipeline (Section 4.3.1) invokes
this trigger with the PIT entry, the Data packet, and its incoming face. The PIT entry may represent either a pending
Interest or a recently satisfied Interest.

Before Expire Interest Trigger
This trigger is declared as Strategy::beforeExpirePendingInterest method. The base class provides a default imple-

mentation that does nothing; a subclass can override this method if the strategy needs to be invoked for this trigger, e.g., to
record data plane measurement results for the pending Interest.

When a PIT entry expires because it has not been satisfied before all in-records expire, before it is deleted, Interest
Unsatisfied pipeline (Section 4.3.1) invokes this trigger with the PIT entry. The PIT entry always represents a pending
Interest.

5.1.2 Actions

Actions are forwarding decisions made by the strategy. An action is implemented as a non-virtual protected method of
nfd::Strategy class.

Send Interest action
This action is implemented as Strategy::sendInterest method. Parameters include a PIT entry, an outgoing face, and

a wantNewNonce flag.
This action triggers entering the Outgoing Interest pipeline (Section 4.2.3).

Reject Pending Interest action
This action is implemented as Strategy::rejectPendingInterest method. Parameters include a PIT entry.
This action triggers entering the Interest reject pipeline (Section 4.2.4).

5.1.3 Storage

Strategies are allowed to store arbitrary information on PIT entries, PIT downstream records (in-records), PIT upstream
records (out-records), and Measurements entries, all of which are derived from StrategyInfoHost type6 . Inside the triggers,
the strategy already has access to PIT entry and can lookup desired in- and out-records. Measurement entry of the Mea-
surements Table (Section 3.6) can be accessed via Strategy::getMeasurements method; the strategy’s access is restricted
to Measurements entries under the namespace(s) under its control (Section 3.6.2).

To store strategy-specific information, the strategy needs to declare a data structure(s) for the information to be stored,
derived from StrategyInfo base class. At any point of time, the strategy can save an instance of StrategyInfo-derived object
using StrategyInfoHost::setStrategyInfo method and/ore retrieve it using StrategyInfoHost::getStrategyInfo<T>

method. Note that strategy itself must ensure that the data structure used to retrieve an item is the same as the one used
for storing. If there is a type mistmatch, behavior is undefined and NFD will most likely crash.

Since the strategy choice for a namespace can be changed at runtime, NFD ensures that all strategy-stored items under
the transitioning namespace will be destroyed. Therefore, the strategy must be prepared that some entities may not have
strategy-stored items; however, if an item exists, its type is guaranteed to be correct. The destructor of stored item must
also cancel all timers, so that the strategy will not be activated on an entity that is no longer under its managed namespace.

Strategy is only allowed to store information using the above mechanism. The strategy object (subclass of nfd::Strategy)
should be otherwise stateless.

5.2 Built-in Strategies

Current version of NFD comes with these built-in strategies:

• best route strategy (/localhost/nfd/strategy/best-route, Section 5.2.1) sends Interest to lowest cost upstream.

• broadcast strategy (/localhost/nfd/strategy/broadcast, Section 5.2.2) sends every Interest to every upstream.

6“Host” is in the sense of holding strategy information, not an endpoint/network entity.

32

5.2 Built-in Strategies 5 FORWARDING STRATEGY

• client control strategy (/localhost/nfd/strategy/client-control, Section 5.2.3) allows the consumer to control
where an Interest goes.

• NCC strategy (/localhost/nfd/strategy/ncc, Section 5.2.4) is similar to CCNx 0.7.2 default strategy.

• access router strategy (/localhost/nfd/strategy/access, Section 5.2.5) is designed for local site prefix on an ac-
cess/edge router.

5.2.1 Best Route Strategy

The best route strategy forwards an Interest to the upstream with lowest routing cost. This strategy is implemented as
nfd::BestRouteStrategy2 class.

The strategy forwards a new Interest to the lowest-cost nexthop (except downstream). After that, if the consumer
retransmits the Interest (with a new Nonce) or a similar Interest arrives from another downstream, the Interest is suppressed
if it’s within MIN RETRANSMISSION INTERVAL, otherwise it’s forwarded again. A retransmitted Interest is forwarded to the
lowest-cost nexthop (except downstream) that is not previously used; if all nexthops have been used, it is forwarded to a
nexthop that is used earliest.

MIN RETRANSMISSION INTERVAL is currently set to a fixed value of 100 milliseconds. We are exploring better ways to set
this parameter, such as RTT estimation or exponential back-off.

5.2.2 Broadcast Strategy

The broadcast strategy forwards every Interest to all upstreams, indicated by the supplied FIB entry. This strategy is
implemented as nfd::BroadcastStrategy class.

After receiving an Interest to be forwarded, the strategy iterates over the list of nexthop records in the FIB entry, and
determines which ones are eligible. A nexthop face is eligible as an upstream if this face is not already an upstream (unexpired
out-record exists in PIT entry), it is not the sole downstream (another in-record exists in PIT entry), and scope is not violated;
pit::Entry::canForwardTo method is convenient for evaluating these rules. The strategy then forwards the Interest to all
eligible upstreams. If there is no eligible upstream, the Interest is rejected.

5.2.3 Client Control Strategy

The client control strategy allows a local consumer application to choose the outgoing face of each Interest. This strategy is
implemented as nfd::ClientControlStrategy class.

If an Interest is received from a LocalFace (Section 2.4) that enables NextHopFaceId feature in LocalControlHeader [7],
and the Interest packet carries a LocalControlHeader that contains a NextHopFaceId field, the Interest is forwarded to the
outgoing face specified in the NextHopFaceId field if that face exists, or dropped if that face does not exist. Otherwise, the
Interest is forwarded in the same manner as the best route strategy (Section 5.2.1).

5.2.4 NCC Strategy

The NCC strategy 7 is an reimplementation of CCNx 0.7.2 default strategy [14]. It has similar algorithm but is not guaranteed
to be equivalent. This strategy is implemented as nfd::NccStrategy class.

5.2.5 Access Router Strategy

The access router strategy is specifically designed for local site prefix on an access/edge router. It is suitable for a namespace
where producers are single-homed and are one hop away. This strategy is implemented as nfd::AccessStrategy class.

The strategy is able to make use of multiple paths in the FIB entry, and remember which path can lead to contents. It
is most efficient when FIB nexthops are accurate, but can tolerate imprecise nexthops, and still be able to find the correct
paths.

The strategy is able to recover from a packet loss in the last-hop link. It retries Interests retransmitted by consumer in
the same manner as best route strategy (Section 5.2.1); The same mechanism also allows the strategy to deal with producer
mobility.

7NCC does not stand for anything; it is just CCN backwards.

33

5.3 How to Develop a New Strategy 5 FORWARDING STRATEGY

5.3 How to Develop a New Strategy

Before starting development of a new forwarding strategy, it is necessary to assess necessity of the new strategy, as well
strategy capabilities and limitations (Section 5.3.1). The procedure of developing a new built-in strategy is outlined in
Section 5.3.2.

5.3.1 Should I Develop a New Strategy?

In many network environments, it may be sufficient to use one of the existing strategies: best-route, broadcast, or ncc.
In cases when an application wants a fine-grain control of Interest forwarding, it can use the special client control strategy
(Section 5.2.3) and specify an outgoing face for every Interest. However, this could control the outgoing face of local forwarder
only. In other cases, a new strategy development could be warranted, provided that the desired behavior can fit within the
strategy API framework.

When developing a new strategy, one needs to remember that the strategy choice is local to a forwarder and only one
strategy can be effective for the namespace. Choosing the new strategy on a local forwarder will not affect the forwarding
decisions on other forwarders. Therefore, developing a new strategy may require reconfiguration of all network nodes.

The only purpose of the strategy is to decides how to forward Interests and cannot override any processing steps in the
forwarding pipelines. If it is desired to support a new packet type (other than Interest and Data), a new field in Interest or
Data packets, or override some actions in the pipelines (e.g., disable ContentStore lookup), it can be only accomplished by
modification of the forwarding pipelines.

Even with the mentioned limitations, the strategy can provide a powerful mechanism to control how Data is retrieved in
the network. For example, by using a precise control of how and where Interests are forwarded and re-transmitted, a strategy
can adapt Data retrieval for a specific network environment. Another example would be an application of limits on how
much Interests can be forwarded to which Faces. This way a strategy can implement various congestion control and DDoS
protections schemes [13,15].

5.3.2 Develop a New Built-in Strategy

The initial step in creating a new strategy is to create a class, say MyStrategy that is derived from nfd::Strategy. This
subclass must at least override the triggers that are marked pure virtual and may override other available triggers that are
marked just virtual.

If the strategy needs to store information, it is needed to decide whether the information is related to a namespace or
an Interest. Information related to a namespace but not specific to an Interest should be stored in Measurements entries;
information related to an Interest should be stored in PIT entries, PIT downstream records, or PIT upstream records. After
this decision is made, a data structure derived from StrategyInfo class needs to be declared. In the existing implementation,
such data structures are declared as nested classes as it provides natural grouping and scope protection of the strategy-specific
entity, but it is not required to follow the same model. If timers (Section 9.7) are needed, EventId fields needs to be added
to such data structure(s).

The final step is to implement the triggers with the desired strategy logic. When implementing strategy logic, refer to
Section 5.1.1 describing when each trigger is invoked and what is it expected to do.

Notes and common pitfalls during strategy development:

• When retrieving a stored item from an entity, you should always check whether the retrieved element is not NULL
(Section 5.1.3). Otherwise, even the strategy logic guarantees that item will always be present on an entity, because
NFD allows dynamic per-namespace strategy change, the expected item could not be there.

• Timers must be cancelled in the destructor of the stored item (Section 5.1.3). This is necessary to ensure that the
strategy will not be accidentally triggered on an entity that is no longer being managed by the strategy.

• Measurements entries are cleaned up automatically. If Measurements entries are used, you need to call this->

getMeasurements()->extendLifetime to avoid an entry from being cleaned up prematurely.

• Before satisfy Interest trigger (Section 5.1.1) may be invoked with either pending Interest or recently satisfied Interest.

• The strategy is allowed to retry, but retries should not be attempted after the PIT entry expires. It is also not allowed
to send the same Interest via the same outgoing face before the previous out-record expires.

• The strategy should not violate scope. If the scope is violated, the outgoing Interest pipeline (Section 4.2.3) will not
send the Interest and the strategy may incorrectly gauge data plane performance.

• The strategy is responsible for performing congestion control.

34

5.3 How to Develop a New Strategy 5 FORWARDING STRATEGY

Before the strategy can be actually used, it is necessary to modify daemon/fw/available-strategies.cpp and install
the new strategy to the list of existing built-in strategies. If the strategy is installed as non-default, the strategy needs to be
activated on desired namespaces via a StrategyChoice management command (Section 6.1.3), e.g., using nfdc command-line
tool.

35

6 MANAGEMENT

6 Management

Management modules, referred to as managers, provide an Interest/Data API for controlling NFD. In particular, users can:

• create, destroy Faces, and enable/disable local control features on local faces (Face Manager)

• add and remove FIB entries (FIB Manager)

• manipulate selection of the forwarding strategy for namespaces (Strategy Choice Manager)

Each manager is an interface for some part of the lower layers of NFD. For example, the Face Manager handles Face
creation/destruction. The current set of managers are independent and do not interact with one another. Consequently,
adding a new manager is a fairly straightforward task; one only needs to determine what part(s) of NFD should be exported
to an Interest/Data API and create an appropriate command Interest interpreter.

In general, NFD managers do not need to offer much functionality through a programatic API. Most managers only need
to allow requests to be routed to them via methods of the form on<ManagerName>Request and to hook into the configuration
file parser. All managerial tasks to control NFD internals should be performed via the defined Interest/Data management
protocol.

All management actions that change NFD state require the use of control commands [4]; a form of signed Interests. These
allow NFD to determine whether the issuer is authorized to perform the specified action. Management modules respond
with control responses to inform the user of the commands success or failure. Control responses have status codes similar to
HTTP and describe the action that was performed or any errors that occurred.

Management actions that just query the current state of NFD do not need to be authenticated. Therefore, these actions
are defined in NFD Management Protocol [3] and are currently implemented in NFD as a simple Interest/Data exchange. In
the future if data access control is desired, some data can be encrypted.

Most of the managers currently utilize dispatch tables for routing incoming requests to the correct processing method
(see Figure 14). All management protocol requests, whether commands or dataset requests [3], follow a namespace pattern
of /localhost/nfd/<manager-name>/<verb>. Here, verb describes the action that the manager-name manager should
perform. For example, /localhost/nfd/fib/add-nexthop directs the FIB Manager to add a next hop (command arguments
follow the verb. When the request is given to the manager’s initial Interest handler method (as specified by InternalFace::

setInterestFilter), the verb is used as the key to the dispatch table to locate the correct method for processing. These
processing methods are referred to in the code as verb processors. Managers support a range of verbs, some of which need
to be signed (control commands) while others do not (datasets). Due to different processing requirements between these two
types of requests, the managers maintain a separate dispatch tables for each.

on<ManagerName>Request()

onValidated<ManagerName>Request()

Is Control
Command?

Unsigned Verb Dispatch Signed Verb Dispatch

Unsigned
Verb Processor

1

validate() ManagerBase::onCommandValidationFailed()
Yes

No

Success

Failure

Unsigned
Verb Processor

N

Signed
Verb Processor

1

Signed
Verb Processor

N

Incoming Interest

Figure 14: Overview of the manager verb dispatch workflow

Dispatching to unsigned verb processors is typically done in the initial Interest handling method (onManagerNameRequest).
Not the same for the control commands. Since these commands need to be first validated (authenticated and autho-
rized), the managers dispatch the incoming command to either on<ManagerName>ValidatedRequest or ManagerBase::

onCommandValidationFailed on validation success and failure, respectively.
Managers use validate method from the ManagerBase base class to invoke CommandValidator. CommandValidator is

an NFD-provided indirection around ndn-cxx’s command authorization and validation functions (see Section 6.2.5).

36

6.1 Managers 6 MANAGEMENT

The successful validation code path then performs command argument extraction, validation, and initializes an protocol
specific implicit arguments before dispatching to the appropriate signed verb processor. Unknown and unsupported verbs typi-
cally fail at this point with a code 501 “Unsupported command” control response. ManagerBase::onCommandValidationFailed
will generate control responses with code 403 “Unauthorized command” to indicate the failure to the requester.

The remainder of this section will describe the managers and their support modules in greater detail. Note, however, that
we intentionally omit many of the details of the management protocols themselves and refer interested readers to the NFD
Management Protocol specification [3].

6.1 Managers

6.1.1 Face Manager

The Face Manager creates and destroys Faces for its configured channels. Local control headers [7] can also be en-
abled/disabled to learn over which Face a Data packet arrived or to direct Interest out specific Faces when used in conjunction
with the client control forwarding strategy (Section 5.2.3).

Configuration
The NFD startup process registers the Face Manager as the face system configuration file section handler via setConfigFile.

This will cause onConfig to be called by the configuration file parser (ConfigFile, Section 9.1).
The Face Manager relies heavily on the NFD configuration file’s face system section. In particular, this section is used

determine which Face protocols should be enabled, which protocol channels should be constructed for future Face creation,
and whether multicast Faces for the protocol need to be created.

The onConfig method performs dispatching for face system subsections (methods beginning with processSection-).
All subsection processors are given the ConfigSection instance representing their subsection (a typedef around the boost
property tree node [16]) and a flag indicating whether or not a dry run is currently being performed. This allows NFD to
test the sanity of the configuration file before performing any modifications.

Some subsection processors take a list of NetworkInterfaceInfo pointers as one of the input parameters. onConfig gets
this list from the listNetworkInterfaces free function defined in core/network-interface.hpp file. The list describes all
available network interfaces available on the machine. In particular, processSectionUdp and processSectionEther use the
list for detecting multicast-capable interfaces for creating multicast faces.

The Face Manager maintains a protocol (string) to shared ptr<ProtocolFactory> mapping (m factories) to facilitate
Face creation tasks. The mapping is initialized during configuration by the processSection- methods. Each subsection
processor creates a factory of the appropriate type and stores it in the mapping. For example, the TCP processor creates a
shared ptr<TcpFactory> and adds it to the map with “tcp4” and “tcp6” keys. When the FaceManager receives command
to create a Face that specifies FaceURI that starts with “tcp4://”, “tcp6://”, it will use this factory to properly dispatch
the request. The factory will use the protocol specified in the FaceURI to further dispatch the request to the appropriate
IPv4 or IPv6 channel (Note that “tcp://” protocol is no longer supported). Refer to Section 2 for more details on the
workings and interactions of the ProtocolFactory, Channel, and Face classes.

Command Processing
On creation, the Face Manager listens for Interests on /localhost/nfd/faces and handles them in the onFaceRequest

method. Validated control commands are dispatched by the onValidatedFaceRequest method to the appropriate verb
processor (Figure 15):

• createFace: create unicast TCP/UDP Faces

• destroyFace: destroy Faces

• enableLocalControl: enable local control feature on requesting Face

• disableLocalControl: disable local control feature on requesting Face

While NFD supports a range of different protocols, the Face management protocol currently only supports the creation
of unicast TCP and UDP Faces during runtime. That said, the Face Manager may also be configured to have other channel
types to listen for incoming connections and create Faces on demand.

createFace uses FaceUri to parse the incoming URI in order to determine the type of Face to make. The URI
must be canonical. A canonical URI for UDP and TCP tunnels should specify either IPv4 or IPv6, have IP address in-
stead of hostname, and contain port number (e.g., “udp4://192.0.2.1:6363” is canonical, but “udp://192.0.2.1” and
“udp://example.net:6363” are not). Non-canonical URI results in a code 400 “Non-canonical URI” control response. The
URI’s scheme (e.g., “tcp4”, “tcp6”, etc.) is used to lookup the appropriate ProtocolFactory in m factories. Failure to find

37

6.1 Managers 6 MANAGEMENT

onValidatedFaceRequest()

onFaceRequest()

Is Control
Command?

Unsigned Verb Dispatch

Signed Verb Dispatch

listEntries()

validate() ManagerBase::onCommandValidationFailed()
Yes

No
Success

Failure

createFace()
destroyFace()

Incoming Interest

enableLocalControl()

disableLocalControl()

onCreated() onConnectionFailed()

ProtocolFactory->createFace()

Success Failure

listChannels()

Figure 15: Overview of the Face Manager’s verb dispatch workflow

a factory results in a code 501 “unsupported protocol” control response. Otherwise, Face Managers calls ProtocolFactory::
createFace method to initiate asynchronous process of face creation (DNS resolution, connection to remote host, etc.), sup-
plying onCreated and onConnectFailed callbacks. These callbacks will be called by the face system after the Face is either
successfully created or failed to be created, respectively.

After Face has been created (from onCreated callback), the Face Manager adds the new Face to the Face Table8 and
responds with a code 200 “success” control response to the original control command. Unauthorized, improperly-formatted
requests and requests when Face is failed to be created will be responded with appropriate failure codes and failure reasons.
Refere to the NFD Management protocol specification [3] for the list of possible error codes.

destroyFace attempts to close the specified Face. The Face Manager responds with code 200 “Success” if the Face is
successfully destroyed or it cannot be found in the Face Table, but no errors occurred. The Face Manager does not directly
remove the Face from the Face Table, but it is a side effect of calling Face::close.

LocalControlHeader can be enabled on local Faces (UnixStreamFace and TcpLocalFace) in order to expose some internal
NFD state to the application or to give the application some control over packet processing. Currently LocalControlHeader
specification [7] defines the following local control features:

• IncomingFaceId: provide the FaceId that Data packets arrive from

• NextHopFaceId: forward Interests out the Face with a given FaceId (requires the client-control forwarding strategy,
Section 5.2.3)

As their names imply, the (enable|disable)LocalControl methods enable and disable the specified local control features
on the Face sending the control command. Both methods utilize extractLocalControlParameters method to perform
common functionality of option validation and ensuring that the requesting Face is local. When incorrectly formatted,
unauthorized request or request from a non-local Face is received, the Face Manager responds with an appropriate error code.
Command success, as defined by Control Command specification [4], is always responded with code 200 “OK” response.

8The Face Table is a table of Faces that is managed by the Forwarder. Using this table, the Forwarder assigns each Face a unique ID, manage
active Faces, and perform lookup for a Face object by ID when requested by other modules.

38

6.1 Managers 6 MANAGEMENT

Datasets and Event Notification
The Face Manager provides two datasets: Channel Status and Face Status. The Channel Status dataset lists all channels

(in the form of their local URI) that this NFD has created and can be accessed under the /localhost/nfd/faces/channels

namespace. Face Status, similarly, lists all created Faces, but provides much more detailed information, such as flags and
incoming/outgoing Interest/Data counts. The Face Status dataset can be retrieved from the /localhost/nfd/faces/list

namespace. These datasets are each published by SegmentPublisher (Section 6.2.3) derivates: FaceStatusPublisher and
ChannelStatusPublisher invoked by the listFaces and listChannels methods, respectively.

In addition to these datasets, the Face Manager also publishes notifications when Faces are created and destroyed. This is
done using a NotificationStream instance (Section 6.2.4) triggered by the onAddFace and onRemoveFace methods. When
the Face Manager is created, these two methods are set as subscribers to the Face Table’s onAdd and onRemove EventEmitter
events (see more detail about the EventEmitter in Section 9.5).

6.1.2 FIB Manager

The FIB Manager allows authorized users (normally, it is only RIB Manager daemon, see Section 7) to modify NFD’s FIB
and publishes a dataset of all FIB entries and their next hops. At a high-level, authorized users can request the FIB Manager
to:

1. add a next hop to a prefix

2. update the routing cost of reaching a next hop

3. remove a next hop from a prefix

The first two capabilities correspond to the add-nexthop verb while removing a next hop falls under remove-nexthop.
The manager listens for Interests under the /localhost/nfd/fib and uses onFibRequest as the initial Interest handling
namespace upon construction.

The FIB Manager supports uses of the following signed verb processors to handle control commands (Figure 16):

• addNextHop: add next hop or update existing hop’s cost

• removeNextHop: remove specified next hop

onValidatedFibRequest()

onFibRequest()

Is Control
Command?

Unsigned Verb Dispatch
Signed Verb Dispatch

listEntries()

validate() ManagerBase::onCommandValidationFailed()
Yes

No
Success

Failure

addNextHop() removeNextHop()

Incoming Interest

Figure 16: Overview of the FIB Manager’s verb dispatch workflow

Note that addNextHop will create a new FIB entry if the requested entry does not already exist. Similarly, removeNextHop
will remove the FIB entry after removing the last next hop.

FIB Dataset
On the unsigned request code path (i.e., listEntries), the FIB manager uses a FibEnumerationPublisher instance to

publish FIB entries according to the FIB dataset specification. The FibEnumerationPublisher holds a reference to the FIB,
and publishes FIB entries using the shared management internal face under the /localhost/nfd/fib/list prefix.

39

6.2 Management Support Classes 6 MANAGEMENT

The FIB Manager’s interaction with the dataset publisher is limited to calling FibEnumerationPublisher::publish,
which is inherited from SegmentPublisher. On invocation, the publish will serialize the FIB in the form of a collec-
tion of FibEntry and nested NextHopList TLVs. Refer to Section 6.2.3 for more details on the inner workings of the
SegmentPublisher.

6.1.3 Strategy Choice Manager

The Strategy Choice Manager is responsible for setting and unsetting forwarding strategies for the namespaces via the Strategy
Choice table. Note that setting/unsetting the strategy applies only to the local NFD. Also, the current implementation
requires that the selected strategy must have been added to a pool of known strategies in NFD at compile time (see Section 5.
Attempting to change to an unknown strategy will result in a code 504 “unsupported strategy” response. By default, there
is at least the root prefix (“/”) available for strategy changes, which defaults to the “best route” strategy. However, it is an
error to attempt to unset the strategy for root (code 403).

Internally, Strategy Choice Manager utilizes the same type of verb processing dispatch system as the FIB and Face Man-
agers. It listens for incoming Interests on /localhost/nfd/strategy-choice and initially handles them in onStrategyCho-

iceRequest. Authorized control commands are dispatched to their verb-specific processing methods ((un)setStrategy) in
onValidatedStrategyChoiceRequest (Figure 17).

onValidatedStrategyChoiceRequest()

onStrategyChoiceRequest()

Is Control
Command?

Unsigned Verb Dispatch
Signed Verb Dispatch

listStrategies()

validate() ManagerBase::onCommandValidationFailed()
Yes

No
Success

Failure

setStrategy() unsetStrategy()

Incoming Interest

Figure 17: Overview of the Strategy Choice Manager’s verb dispatch workflow

The Strategy Choice Manager also provides a dataset of the active strategy for each prefix under the /localhost/nfd

/strategy-choice/list namespace. Upon receiving a request, the manager uses a StrategyChoicePublisher instance to
serialize the Strategy Choice table into StrategyChoice TLVs.

6.1.4 Forwarder Status

Forwarder Status (or StatusServer) provides information about the NFD and basic statistics about NFD. This includes the
NFD’s version, startup time, Interest/Data packet counts, and various table entry counts. StatusServer listens for Interests
on /localhost/nfd/status and publishes Data packets with a 5 second freshness time to avoid excessive processing.

6.2 Management Support Classes

This section describes several support classes that are used exclusively by NFD’s management modules.

6.2.1 Manager Base

ManagerBase is the base class for all managers. This class holds the manager’s shared InternalFace and provides a number
of commonly used methods. In particular, ManagerBase provides indirection to the CommandValidator via the validate

method and extracts/validates control parameters (control command arguments). ManagerBase also provides convenience
methods for initializing and sending control responses (setResponse and sendResponse).

40

6.2 Management Support Classes 6 MANAGEMENT

On construction, ManagerBase obtains a reference to a CommandValidator that will be used for control command au-
thorization later. Derived manager classes provide the ManagerBase constructor with the name of their privilege (e.g.,
faces, fib, or strategy-choice). This privilege is used to specify the set of authorized capabilities for a given NDN identity
certificate in the configuration file.

6.2.2 Internal Face

Each manager is constructed around a shared InternalFace instance. Managers register their control command prefix with
the internal face to receive commands and publish control responses. The internal face also holds the CommandValidator

used to authorized NFD control commands. However, the validator is only accessed through ManagerBase::validate.
InternalFace is derived from AppFace and Face interfaces (Figure 18). The AppFace interface defines setInterestFilter,

put, and most importantly, sign. AppFace provides a KeyChain instance that is used by the managers to sign control re-
sponses and datasets. The Face interface used to attach the internal Face into the forwarder and FIB, so that the forwarder
can deliver related Interests to the manager.

Face

#m_keyChain : KeyChain
AppFace

-m_interestFilters : map<, OnInterest>
-m_validator : CommandValidator

InternalFace

Interface used by the Forwarder Interface used by the Manager (application)

Figure 18: Dual interface inheritance of the internal Face

6.2.3 Segment Publisher

SegmentPublisher provides a generalized method for segmenting and publishing datasets. SegmentPublishers are con-
structed around an AppFace that is used for signing and posting Data as well as a name prefix under which the Data should
be published. Users of this class family need only call the publish method and the chosen publisher will handle all of the
publications details.

SegmentPublisher itself is an abstract class. Dataset publishers extend the class to define a generate method that
handles the serialization of the desired dataset. When publish is called, it will first invoke generate to fill an internal
EncodingBuffer with protocol defined data.

After generate initializes the EncodingBuffer, SegmentPublisher will segment it into Data packets of up to 4,400 bytes
with incrementing segment number name components. The last Data packet in the collection is marked by a final block ID
referring to itself.

More concretely, consider the FIB dataset and its FibEnumerationPublisher. This publisher holds a reference to the
FIB. When generate is called, the publisher will walk the FIB and serialize each entry into a series of FibEntry and nested
NextHopList TLVs that represent the entirety of the FIB that are placed into the provided EncodingBuffer. This buffer
and length of the serialized content are returned to the publish method so that it can chunk it into segmented Data packets.

The SegmentPublisher’s generate-based approach to Data production allows it to be highly generalized and removes
the need of re-writing boilerplate segmentation code. Adding a new dataset publisher is therefore very simple; the developer
need only handle encoding their data source (e.g., the FIB in the case of the FIB dataset) without concern for how it should
be packetized.

6.2.4 Notification Stream

NotificationStream serializes and publishes objects to an application Face (a class implementing the AppFace interface)
under a specified namespace. The only constraint placed on publication by the postNotification method is that the object
to be published has a no argument wireEncode method.

6.2.5 Command Validator

The CommandValidator validates control commands based on privileges specified in the NFD configuration file. The NFD
startup process registers CommandValidator as the processor of the authorizations section using setConfigFile, which

41

6.2 Management Support Classes 6 MANAGEMENT

will in turn invoke the onConfig method. onConfig supports several privileges:

• faces (Face Manager)

• fib (FIB Manager)

• strategy-choice (Strategy Choice Manager)

These privileges are associated with a specified NDN identity certificate that will then be authorized to issue control
commands to the listed management modules. The CommandValidator learns about which privileges to expect in the config-
uration file via the addSupportedPrivilege method. This method is invoked by each manager’s ManagerBase constructor
with the appropriate privilege name.

CommandValidator also supports the notion of a “wildcard” identity certificate for demonstration purposes to remove the
“burden” of configuring certificates and privileges. Note, however, that this feature is security risk and should not be used
in production. See Section 9.1 for more detail about CommandValidator configuration.

6.2.6 General Configuration File Section Parser

The general namespace provides parsing for the identically named general configration file section. The NFD startup
process invokes setConfigSection to trigger the corresponding localized (static) onConfig method for parsing.

At present, this section is limited to specifying an optional user and group name to drop the effective userid and
groupid for safer operation. The general section parser initializes a global PrivilegeHelper instance to perform the actual
(de-)escalation work.

6.2.7 Tables Configuration File Section Parser

TablesConfigSection provides parsing for the tables configuration file section. This class can then configuration the
various NFD tables (CS, PIT, FIB, Strategy Choice, and Measurements) appropriately. Currently, the tables section on
supports changing the default maximum number of Data packets that the content store can hold. Like other configuration
file parsers, TablesConfigSection is registered as the processor of its corresponding section by the NFD startup process via
setConfigFile method, which invokes onConfig.

42

7 RIB MANAGEMENT

7 RIB Management

The RIB Manager that runs as a separate process, NRD (NFD RIB Daemon), manages the routing information base (RIB)
and updates the FIB as needed. Logically, the RIB Manager is a part of NFD; however, it is implemented as a separate
process to handle complex routing table manipulation while keeping packet forwarding logic lightweight and simple. Figure 19
shows the high-level interaction of the RIB Manager with NFD and other applications. A more detailed interaction is shown
in Figure 20.

Applications and Routing protocols

ndnping, NLSR, …

RIB Manager
(NRD) RIB

NFD
FIB

Data Traffic

RIB updates

FIB updates

Figure 19: RIB Manager—system diagram

NFD provides various flags for prefix registration that allow fine grained control and features such as hole-punching in a
namespace. Depending on the flag, a single registration request may result in multiple FIB entry changes. The RIB Manager
takes the responsibility of processing these flags off of the FIB Manager. It receives all registration requests, processes the
included flags, and creates FIB updates as needed, which makes the forwarder leaner and faster. As the RIB can be updated
by different parties in different ways, including various routing protocols, application’s prefix registrations, and command-line
manipulation by sysadmins, the RIB management module also provides a common abstraction to all these processes and
generates a consistent forwarding table. Therefore, applications should use the RIB management interface to manipulate the
RIB, and only NRD should use the FIB management interface to directly manipulate NFD’s FIB.

7.1 Initializing NRD

When an instance of the RIB Manager is created, the following operations are performed:

• localhost and localhop validation rules are loaded from the the rib block of the NFD configuration file;

• the control command prefixes /localhost/nfd/rib and /localhop/nfd/rib (if enabled) are “self-registered” in NFD’s FIB.
This allows NRD to receive RIB management control commands (registration/unregistration requests), requests for
RIB management datasets, and notifications.

• LocalControlHeader [7] is requested on the Face between NRD and NFD. This allows NRD to get FaceId from where
the prefix registration/unregistration commands were received (for “self-registrations” from NDN applications).

• RIB manager subscribes to the Face status notifications using the FaceMonitor class (see Section 9.6) to receive notifi-
cations whenever a Face is created or destroyed, so the corresponding RIB entries can be updated.

7.2 Communicating with NRD

Applications, including routing protocols, may register or unregister routes through NRD by using control commands [4] sent
to the RIB management module.

43

7.2 Communicating with NRD 7 RIB MANAGEMENT

NLSR

Create Face for itself

NFD

NRD

Enable Control Header(CH)

Set Interest Filters
/localhost/nfd/rib

Read NFD conf file and
loads validators

Start event loop

Create Face for itself

Register Prefix
(/localhost/nrd/register/<TLV-Encoded Options>

Forward to NRD

Do route calculation
and get next hops

● Register prefix
● Translate flags, update RIB
● Create FIB updates

 Update FIB

Mark nrd's face for
CH forwarding

Set Interest Filters
/localhop/nfd/rib

Set Interest Filter

Forward to NRD

Add CH to interest

Update FIB*

* Self-registration of NLSR is complete here. Similar steps are followed by other
applications for self-registration. Please note that the steps beyond this point
are only required by a routing protocol.

● Register NLSR
● Translate flags, update RIB
● Create FIB updates

Figure 20: RIB Manager—timing diagram

44

7.3 RIB Entry 7 RIB MANAGEMENT

7.2.1 Registering a Route

A route may be registered with the command-verb: register and the following ControlParameters:

• Name: Associated name prefix (required)

• FaceId: The Face ID returned from the Face Management module after Face creation.
If the FaceId is set to zero or not set, the requesting Face is used (self-registration).

• Origin: The producer of the command; defaults to 0 (Local producer application)

• Cost: Route preference; defaults to 0

• Flags: inclusive OR of route inheritance flags (Section 7.4)

• ExpirationPeriod: The duration for which the route is active (in milliseconds)

7.2.2 Unregistering a Route

A route may be unregistered with the command-verb: unregister and the following ControlParameters:

• Name: Associated name prefix (required)

• FaceId: The Face ID returned from the Face Management module after Face creation.
If the FaceId is set to zero or not set, the requesting Face is used (self-deregistration).

• Origin: The producer of the command; defaults to 0 (Local producer application)

7.3 RIB Entry

The RIB contains a list of RIB entries each of which holds the following information for a route:

• name: Associated name prefix

• FaceId: The nexthop Face

• origin: The producer of the announcement. A prefix registration request can be sent by different parties. This field is
used to differentiate between them. If one of the routing protocols or applications quits, this field helps to remove RIB
entries added by that protocol or application.

– 0: Local producer application

– 128: NLSR

– 255: Static route

• flags: inclusive OR of route inheritance flags (Section 7.4)

• cost: Route preference

– When there are multiple routes for the same name prefix, a lower cost indicates a more preferred nexthop.

• expires: The duration for which the route is active (in milliseconds)

7.4 Prefix Registration Flags

The prefix registration flags allow a fine grained control over prefix registration. The currently defined flags are:

CHILD INHERIT: Longer matching name prefixes may use this route; true by default.
Use ndn::nfd::ROUTE FLAG CHILD INHERIT to set the flag.

CAPTURE: No shorter name prefix route may be used for this prefix. If specified, this flag overrides the CHILD INHERIT flag.

Note that if any route in a RIB entry has the CAPTURE flag set, the entire RIB entry’s namespace is blocked from using
shorter prefix routes.

Use ndn::nfd::ROUTE FLAG CAPTURE to set the flag.

45

7.5 On Request 7 RIB MANAGEMENT

Table 2: Example RIB
Name prefix Nexthop FaceId CHILD INHERIT CAPTURE Effective Nexthops∗

/ 1 true false 1
/ 2 false false 2
/A 3 true false 3, 1
/A/B/C 4 true false 4, 3, 1
/D 5 true true 5
/D 6 true false 6
/D/E 7 false false 7, 6, 5

∗ “Effective Nexthops” column shows the registered and inherited nexthops (it is not a part of the actual RIB).

7.4.1 Examples

For the RIB example shown in Table 2, the following forwarding decisions can be taken:

1. Interest /S can go through Faces 1 and 2.

2. Interest /A/P can go through Faces 1 and 3, but cannot go through Face 2 since that route has
CHILD INHERIT=false.

3. Interest /A/B/C/Q can through Faces 1, 3, and 4 because route /A/B/C inherits Face 1 from / and
Face 3 from /A.

4. Interest /D/R can go through Faces 5 and 6, but cannot go through Face 1 since one of the routes
on /D sets CAPTURE=true.

5. Interest /D/E/F can go through Faces 5, 6, and 7 due to the CHILD INHERIT=true routes on /D, but cannot go through
Face 1 since one of the routes on /D sets CAPTURE=true.

7.4.2 Cost Inheritance

Version 0.2 of NFD implements the following logic to assign costs to nexthops in the FIB when CHILD INHERIT is set. When
the flag is set on the route of a RIB entry, that route’s Face and cost are applied to the longer prefixes (children) under the
RIB entry’s namespace. If a child already has a route with the Face that would be inherited, the inherited route’s Face and
cost are not applied to that child’s nexthops in the FIB. Also, if a child already has a route with the Face that would be
inherited and the child’s route has its CHILD INHERIT flag set, the inherited route’s Face and cost are not applied to the
nexthops of the child nor the children of the child namespace. If a RIB entry has neither the CHILD INHERIT nor the CAPTURE

flag set on any of its routes, that RIB entry can inherit routes from longer prefixes which do not have the same Face ID as
one of the RIB entry’s routes.

Future versions will assign the lowest available cost to a nexthop Face based on all inherited RIB entries
not blocked by a CAPTURE flag.

Table 3: Version 0.2 Nexthop cost calculation. The nexthops and their costs for each RIB entry are calculated using the RIB
(the table on the left) and are installed into the FIB (the table on the right).

Name prefix Nexthop FaceId CHILD INHERIT CAPTURE Cost
/ 1 true false 75
/a 2 false false 50
/a/b 1 false false 65
/b 1 true false 100
/b/c 3 true true 40
/b/c/e 1 false false 15
/b/d 4 false false 30

Name prefix (Nexthop FaceId, Cost)
/ (1, 75)
/a (2, 50), (1, 75)
/a/b (1, 65)
/b (1, 100)
/b/c (3, 40)
/b/c/e (1, 15), (3, 40)
/b/d (4, 30), (1, 100)

7.5 On Request

When NRD receives a request, it first validates it. If the validation fails, it returns a control response with error code 403.
If the validation is successful, it confirms the passed command is valid and if it is, executes one of the following commands:

46

7.6 Termination 7 RIB MANAGEMENT

• Register Entry: The RIB Manager takes the passed parameters from the incoming request and searches for a RIB
entry that matches the name, FaceId and Origin of the incoming request. If the FaceId is 0 in the incoming request then
it means that an application is trying to register itself with NFD (self-registration). For self-registration requests, the
RIB Manager fetches the FaceId of the application from the Control Header and uses it for registration. If no match is
found, the passed parameters are inserted as a new entry. Otherwise, the matching entry is updated. It also processes
the flags of the received request and updates the relevant rib entries. Finally, the RIB manage adds nexthops to the
FIB as needed.

• Unregister Entry: NRD takes the passed parameters and removes the corresponding nexthop from the FIB. If the
removal is successful, the RIB entry with the same name, FaceId, and origin is removed from the RIB.

In both cases, the RIB Manager returns a control response with code 200 if the command is executed successfully.
Figure 21 shows the verb dispatch workflow of the RIB manager.

onLocalhostRequest()
Or

onLocalhopRequest()

validate
Command

Print Error
and Continue

registerEntry()

Rib::insert()

validate
Parameters()

validate
Parameters()

unregisterEntry()

New

Rib::erase()

ndn::nfd::FibAddNextHopCommand

Yes Yes

 Yes

scheduler::cancel()
No

scheduler::cancel()

scheduler::schedule()

ndn::nfd::FibRemoveNextHopCommand

Yes Yes

No

No No

Figure 21: Verb dispatch workflow of the RIB Manager

7.6 Termination

The RIB Manager, running as a separate NRD process, is an essential module of the NFD. Therefore, for the forwarder be
fully functional, the NRD process must be always running simultaneously alongside with the NFD process. This is taken
care by the startup scripts of NFD, starting and restarting NRD process whenever NFD is started or restarted. In addition
to that, NFD should be terminated whenever NRD stops for any reason; this is not yet currently implemented and should
be available in the next releases.

7.7 Extending RIB Manager

The RIB Manager currently supports only two commands: register and unregister. However, the functionality of the RIB
Manager can be extended by introducing more commands. For example, in the current implementation, if a node wants to
announce a prefix, it needs to communicate with a specific routing protocol. If NRD supports a standardized interface for
that, e.g., advertise and withdraw commands, the process of announcing and withdrawal of prefixes in routing protocol could
become more uniform and simple.

47

8 SECURITY

8 Security

Security consideration of NFD involves two parts: interface control and trust models.

8.1 Interface Control

The default NFD configuration requires superuser privileges to access raw ethernet interfaces and the Unix socket location.
Due to the research nature of NFD, users should be aware of the security risks and consequences of running as the superuser.

It is also possible to configure NFD to run without elevated privileges, but this requires disabling ethernet faces and
changing the default Unix socket location9 (both in the NFD configuration file, see Section 9.1). However, such measures
may be undesirable (e.g. performing ethernet-related development). As a middle ground, users can also configure an
alternate effective user and group id for NFD to drop privileges to when they are not needed. This does not provide any real
security benefit over running exclusively as the superuser, but it could potentially buggy code from damaging the system
(see Section 9.1).

8.2 Trust Model

Different trust models are used to validate command Interests depending on the recipient. Among the four types of commands
in NFD, the commands of faces, fib, and strategy-choice are sent to NFD, while rib commands are sent to NRD.

8.2.1 Command Interest

Command Interests are a mechanism for issuing authenticated control commands. Signed commands are expressed in terms
of a command Interest’s name. These commands are defined to have five additional components after the management
namespace: command name, timestamp, random-value, SignatureInfo, and SignatureValue.

/signed/interest/name/<timestamp>/<nonce>/<signatureInfo>/<signatureValue>

The command Interest components have the following usages:

• timestamp is used to protect against replay attack.

• nonce is a random value (32 bits) which adds additional assurances that the command Interest will be unique.

• signatureInfo encodes a SignatureInfo TLV block.

• signatureValue encodes the a SignatureBlock TLV block.

A command interest will be treated as invalid in the following four cases:

• one of the four components above (SignatureValue, SignatureInfo, nonce, and Timestamp) is missing or cannot be
parsed correctly;

• the key, according to corresponding trust model, is not trusted for signing the control command;

• the signature cannot be verified with the public key pointed to by the KeyLocator in SignatureInfo;

• the producer has already received a valid signed Interest whose timestamp is equal or later than the timestamp of the
received one.

Note that in order to detect the fourth case, the producer needs to maintain a latest timestamp state for each trusted
public key10 For each trusted public key, the state is initialized as the timestamp of the first valid Interest signed by the key.
Afterwards, the state will be updated each time the producer receives a valid command Interest.

Note that there is no state for the first command Interest. To handle this special situation, the producer should check
the Interest’s timestamp against a proper interval (e.g., 120 seconds):

[current timestamp− interval/2, current timestamp + interval/2].

The first Interest is invalid if its timestamp is outside of the interval.

9libndn-cxx expects the default Unix socket location, but this can be changed in the library’s client.conf configuration file.
10Since public key cryptography is used, sharing private keys is not recommended. If private key sharing is inevitable, it is the key owner’s

responsibility to keep clock synchronized.

48

8.2 Trust Model 8 SECURITY

8.2.2 NFD Trust Model

With the exception of the RIB Manager (NRD), NFD uses a simple trust model of associating privileges with NDN identity
certificates. There are currently three privileges that can be directly granted to identities: faces, fib, and strategy-choice.
New managers can add additional privileges via the ManagerBase constructor.

A command Interest is unauthorized if the signer’s identity certificate is not associated with the command type. Note
that key retrievals are not permitted/performed by NFD for this trust model; an identity certificate is either associated with
a privilege (authorized) or not (unauthorized). For details about how to set privileges for each user, please see Section 9 and
Section 6.

8.2.3 NRD Trust Model

NRD uses its own trust model to authenticate rib type command Interests. Applications that want to register a prefix in
NFD (i.e., receive Interests under a prefix) may need to send an appropriate rib command Interest. After NRD authenticates
the rib command Interest, NRD will issue fib command Interests to NFD to set up FIB entries.

NRD’s trust model defines the conditions for keys to be trusted to sign rib commands. Namely, the trust model must
answer two questions:

1. Who are trusted signers for rib command Interests?

2. How do we authenticate signers?

Trusted signers are identified by expressing the name of the signing key with a NDN Regular Expression [17]. If the signing
key’s name does not match the regular expression, the command Interest is considered to be invalid. Signers are authenticated
by a rule set that explicitly specifies how a signing key can be validated via a chain of trust back to a trust anchor Both
Signer identification and authentication can be specified in a configuration file that follows the Validator Configuration File
Format specification [18].

NRD supports two modes of prefix registration: localhost and localhop. In localhop mode, NRD expects prefix registration
requests from applications running on remote manchines, (i.e., NFD is running on an access router). When localhop mode
is enabled, rib command Interests are accepted if the signing key can be authenticated along the naming hierarchy back to
a (configurable) trust anchor. For example, the trust anchor could be the root key of the NDN testbed, so that any user
in the testbed can register prefixes through the NRD. Alternatively, the trust anchor could be the key of a testbed site or
instituion, thus limiting NRD prefix registration to users at that site/institution.

In localhost mode, NRD expects to receive prefix registration requests from local applications. By default, NRD allows
any local application to register prefixes However, the NFD administrator may also define their own access control rules using
the same configuration format as the trust model configuration for localhop mode.

49

http://redmine.named-data.net/projects/ndn-cxx/wiki/Regex
http://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html
http://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html

9 COMMON SERVICES

9 Common Services

NFD contains several common services to support forwarding and management operations. These services are an essential
part of the source code, but are logically separated and placed into the core/ folder.

In addition to core services, NFD also relies extensively on libndn-cxx support, which provides many basic functions such
as: packet format encoding/decoding, data structures for management protocol, and security framework. The latter, within
the context of NFD, is described in more detail in Section 8.

9.1 Configuration File

Many aspects of NFD are configurable through a configuration file, which adopts the Boost INFO format [16]. This format
is very flexible and allows any combination of nested configuration structures.

9.1.1 User Info

Currently, NFD defines 6 top level configuration sections: general, tables, log, face system, security, and rib.

• general: The general section defines various parameters affecting the overall behavior of NFD. Currently, the imple-
mentation only allows user and group parameter settings. These parameters define the effective user and effective
group that NFD will run as. Note that using an effective user and/or group is different from just dropping privileges.
Namely, it allows NFD to regain superuser privileges at any time. By default, NFD must be initially run with and
be allowed to regain superuser privileges in orde to access raw ethernet interfaces (Ethernet face support) and create
a socket file in the system folder (Unix face support). Temporarily dropping privileges by setting the effective user
and group id provides minimal security risk mitigation, but it can also prevent well intentioned, but buggy, code from
harming the underlying system. It is also possible to run NFD without superuser privileges, but it requires the dis-
abling of ethernet faces (or proper configuration to allow non-root users to perform privileged operations on sockets)
and modification of the Unix socket path for NFD and all applications (see your installed nfd.conf configuration file or
nfd.conf.sample for more details). When applications are built using the ndn-cxx library, the Unix socket path for the
application can be changed using the client.conf file. The library will search for client.conf in three specific locations
and in the following order:

– ~/.ndn/client.conf

– /SYSCONFDIR/ndn/client.conf (by default, SYSCONFDIR is /usr/local/etc)

– /etc/ndn/client.conf

• tables: The tables section is configures NFD’s tables: Content Store, PIT, FIB, Strategy Choice, and Measurements.
NFD currently supports configuring the maximum Content store size and per-prefix strategy choices:

– cs_max_packets: Content Store size limit in number of packets. Default is 65536, which corresponds to about
500 MB, assuming maximum size if 8 KB per Data packet.

– strategy_choice: This subsection selects the initial forwarding strategy for each specified prefix. Entries are
listed as <namespace> <strategy-name> pairs.

• log: The log section defines the logger configuration such as the default log level and individual NFD component log
level overrides. The log section is described in more detail in the Section 9.2.

• face system: The face system section fully controls allowed face protocols, channels and channel creation parameters,
and enabling multicast faces. Specific protocols may be disabled by commenting out or removing the corresponding
nested block in its entirety. Empty sections will result in enabling the corresponding protocol with its default parameters.

Version 0.2.0 of NFD contains the following face protocols:

– unix: Unix protocol

This section can contain the following parameter:

∗ path: sets the path for Unix socket (default is /var/run/nfd.sock)

Note that if the unix section is present, the created Unix channel will always be in a “listening” state. Commenting
out the unix section disables Unix channel creation.

50

9.1 Configuration File 9 COMMON SERVICES

– udp: UDP protocol

This section can contain the following parameters:

∗ port: sets UDP unicast port number (default is 6363)

∗ enable_v4: controls whether IPv4 UDP channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 UDP channels are enabled (enabled by default)

∗ idle_timeout: sets the idle time in seconds before closing a UDP unicast face (default is 600 seconds)

∗ keep_alive_timeout: sets the interval (seconds) between keep-alive refreshes (default is 25 seconds)

∗ mcast: controls whether UDP multicast faces need to be created (enabled by default)

∗ mcast_port: sets UDP multicast port number (default is 56363)

∗ mcast_group: UDP IPv4 multicast group (default is 224.0.23.170)

Note that if the udp section is present, the created UDP channel will always be in a “listening” state as UDP is
a session-less protocol and “listening” is necessary for all types of face operations.

– tcp: TCP protocol

This section can contain the following parameters:

∗ listen: controls whether the created TCP channel is in listening mode and creates TCP faces when an
incoming connection is received (enabled by default)

∗ port: sets the TCP listener port number (default is 6363)

∗ enable_v4: controls whether IPv4 TCP channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 TCP channels are enabled (enabled by default)

– ether: Ethernet protocol (NDN directly on top of Ethernet, without requiring IP protocol)

This section can contain the following parameters:

∗ mcast: controls whether Ethernet multicast faces need to be created (enabled by default)

∗ mcast_group: sets the Ethernet multicast group (default is 01:00:5E:00:17:AA)

Note that the Ethernet protocol only supports multicast mode at this time. Unicast mode will be implemented in
future versions of NFD.

– websocket: The WebSocket protocol (tunnels to connect from JavaScript applications running in a web browser)

This section can contain the following parameters:

∗ listen: controls whether the created WebSocket channel is in listening mode and creates WebSocket faces
when incoming connections are received (enabled by default)

∗ port 9696 ; WebSocket listener port number

∗ enable_v4: controls whether IPv4 WebSocket channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 WebSocket channels are enabled (enabled by default)

• authorizations: The authorizations section provides a fine-grained control for management operations. As described
in Section 6, NFD has several managers, the use of which can be authorized to specific NDN users. For example, the
creation and destruction of faces can be authorized to one user, management of FIB to another, and control over
strategy choice to a third user.

To simplify the initial bootstrapping of NFD, the sample configuration file does not restrict local NFD management
operations: any user can send management commands to NFD and NFD will authorize them. However, such config-
uration should not be used in a production environment and only designated users should be authorized to perform
specific management operations.

The basic syntax for the authorizations section is as follows. It consists of zero or more authorize blocks. Each
authorize block associates a single NDN identity certificate, specified by the certfile parameter, with privileges

blocks. The privileges block defines a list of permissions/managers (one permission per line) that are granted to the
user identified by certfile defines a file name (relative to the configuration file format) of the NDN certificate. As a
special case, primarily for demo purposes, certfile accepts value ”any”, which denotes any certificate possessed by any
user. Note that all managers controlled by the authorizations section are local. In other words, all commands start
with /localhost, which are possible only through local faces (Unix face and TCP face to 127.0.0.1).

Note for developers:

The privileges block can be extended to support additional permissions with the creation of new managers (see
Section 6). This is achieved by deriving the new manager from the ManagerBase class. The second argument to the
ManagerBase constructor specifies the desired permission name.

51

9.2 Basic Logger 9 COMMON SERVICES

• rib: The rib section controls behavior and security parameters for NFD RIB manager. This section can contain
two subsections: localhost_security and localhop_security. The former controls authorizations for registering
and unregistering prefixes in RIB from local users (through local faces: Unix socket or TCP tunnel to 127.0.0.1).
localhop_security defines authorization rules for so called localhop prefix registrations: registration of prefixes on
the next hop routers.

Unlike the main authorizations section, the rib security section uses a more advanced validator configuration, thus
allowing a greater level of flexibility in specifying authorizations. In particular, it is possible to specify not only specific
authorized certificates, but also indirectly authorized certificates. For more details about validator configuration and
its capabilities, refer to Section 8 and Validator Configuration File Format specification [18].

Similar to the authorizations section, the sample configuration file, allows any local user to send register and
unregister commands (localhost_security) and prohibits remote users from sending registration commands (the
localhop_security section is disabled). On NDN Testbed hubs, the latter is configured in a way to authorize any
valid NDN Testbed user (i.e., a user possessing valid NDN certificate obtained through ndncert website [19]) to send
registration requests for user namespace. For example, a user Alice with a valid certificate /ndn/site/alice/KEY/...

/ID-CERT/... would be allowed to register any prefixes started with /ndn/site/alice on NDN hub.

9.1.2 Developer Info

When creating a new management module, it is very easy to make use of the NFD configuration file framework.
Most heavy lifting is performed using the Boost.PropertyTree [16] library and NFD implements an additional wrapper
(ConfigFile) to simplify configuration file operations.

1. Define the format of the new configuration section. Reusing an existing configuration section could be problematic,
since a diagnostic error will be generated any time an unknown parameter is encountered.

2. The new module should define a callback with prototype void(*)(ConfigSection..., bool isDryRun) that
implements the actual processing of the newly defined section. The best guidance for this step is to take a look at
the existing source code of one of the managers and implement the processing in a similar manner. The callback
can support two modes: dry-run to check validity of the specified parameters, and actual run to apply the specified
parameters.

As a general guideline, the callback should be able to process the same section multiple times in actual run mode
without causing problems. This feature is necessary in order to provide functionality of reloading configuration
file during run-time. In some cases, this requirement may result in cleaning up data structures created during the
run. If it is hard or impossible to support configuration file reloading, the callback must detect the reloading event
and stop processing it.

3. Update NFD initialization in daemon/main.cpp file. In particular, the new management module needs to be
created somewhere around initializeManagement call, once created the second step callback needs to be added
to ConfigFile class dispatch. Similar updates should be made to reload call in main.cpp.

As another general recommendation, do not forget to create proper test cases to check correctness of the new
config section processing. This is vital for providing longevity support for the implemented module, as it ensures
that parsing follows the specification, even after NFD or the supporting libraries are changed.

9.2 Basic Logger

One of the most important core services is the logger. NFD’s logger provides support for multiple log levels, which can be
configured in the configuration file individually for each module. The configuration file also includes a setting for the default
log level that applies to all modules, except explicitly listed.

9.2.1 User Info

Log level is configured in the log section of the configure file. The format for each configuration setting is a key-value pair,
where key is name of the specific module and value is the desired log level. Valid values for log level are:

• NONE: no messages

• ERROR: show only error messages

• WARN: show also warning messages

52

http://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html
https://github.com/named-data/ndncert

9.3 Hash Computation Routines 9 COMMON SERVICES

• INFO: show also informational messages (default)

• DEBUG: show also debugging messages

• TRACE: show also trace messages

• ALL: all messages for all log levels (most verbose)

Individual module names can be found in the source code by looking for NFD_LOG_INIT(<module name>) statements in
.cpp files, or using --modules command-line option for the nfd and nrd programs. There is also a special default_level
key, which defines log level for all modules, except explicitly specified (if not specified, INFO log level is used).

9.2.2 Developer Info

To enable NFD logging in a new module, very few actions are required from the developer:

• include core/logger.hpp header file

• declare logging module using NFD_LOG_INIT(<module name>) macros

• use NFD_LOG_<LEVEL>(statement to log) in the source code

The effective log level for unit testing is defined in unit-tests.conf (see sample unit-tests.conf.sample file) rather
the normal nfd.conf. unit-tests.conf is expected under the top level NFD directory (i.e. same directory as the sample
file).

9.3 Hash Computation Routines

Common services also include several hash functions, based on city hash algorithm [12], to support fast name-based operations.
Since efficient hash table index size depends on the platform, NFD includes several versions, for 16-bit, 32-bit, 64-bit, and
128-bit hashing.11

Name tree implementation generalizes the platform-dependent use of hash functions using a template-based helper (see
computeHash function in daemon/tables/name-tree.cpp). Depending on the size of size_t type on the platform, the
compiler will automatically select the correct version of the hash function.

Other hash functions may be included in the future to provide tailored implementations for specific usage patterns. In
other words, since the quality of the hash function is usually not the sole property of the algorithm, but also relies on the
hashed source (hash functions need to hash uniformly into the hash space), depending on which Interest and Data names
are used, other hash functions may be more appropriate. Cryptographic hash functions are also an option, however they are
usually prohibitively expensive.

9.4 DNS Resolver

DNS resolution is a common operation needed in various places to support face management (create IP-based channels
and face). As such, NFD contains a helper class to perform DNS resolution in synchronous and in asynchronous manner.
Synchronous operations are (and should be in any new code) limited to the initialization phase because they stall all other
operations.

Therefore, all DNS resolution operations that needed to be performed in parallel with normal NFD packet forwarding
(e.g., during UDP and TCP face creation based on management commands) must be performed in asynchronous manner.
The only complication is that instead of receiving resolution result as a return value, the asynchronous version of resolver
helper returns the result (or failure) via the specified callback.

To use resolution for protocol X:

• Include core/resolver.hpp

– For synchronous resolution calls:

Resolver<X>::syncResolve(hostname, port)

– For asynchronous resolution calls:

Resolver<X>::asyncResolve(hostname, port, callbackWhenSucceed, callbackWhenFailed)

There are also two convenience versions to simplify resolution operations for UDP and TCP protocols: UdpResolver and
TcpResolver.

11Even though the performance is not a primary goal for the current implementation, we tried to be as much efficient as possible within the
developed framework.

53

9.5 Event Emitter 9 COMMON SERVICES

9.5 Event Emitter

The EventEmitter abstraction provides a light-way event subscription mechanism to get notifications (callback calls) when
a specific event occurs. One of the primary uses of EventEmitter is the face system, where it is used to notify the subscribed
entities of the arrival of new Interest and Data packet arrivals on the Face, or when the Face fails.

EventEmitter is very much like an ordinary callback mechanism, with the difference that it allows zero or multiple
subscribers for the same event (i.e., zero or many callbacks per event).

When deemed suitable, the event emitter can be used as follows.

• Event generator code:

– Include core/event-emitter.hpp.

– Define a variable of templated class EventEmitter, specifying a list of parameters that will be passed to each
event. That is, if the generated event needs to pass a string to the event subscribers (subscriber will have
void subscriber(const std::string& msg) prototype), the variable should be defined as:

EventEmitter<std::string> events;

– Whenever an event occurs, call events as if it is a function, specifying the event parameters.

events("test event");

• Event subscriber code:

– Include your event generator header file.

– Define function or method that will receive event notifications, e.g.,

void onEvent(const std::string& msg) ...

– When appropriate, subscribe the method or callback to the EventEmitter. To do so, you just need to add using
operator+= your method or function to the event variable using bind construction:

generator.events += bind(&MyClass::onEvent, this, _1);

– When events are no longer required, use generator.events.clear() to remove all subscribers.

Note that the EventEmitter implementation makes a simplifying assumption that event subscribers will only be
removed together. In other words, after two or more subscribers are added go the EventEmitter instance, as
shown below, it is impossible to remove an individual subscriber. The only option is to remove all subscribers at
the same time. While this assumption is generally a drawback, it does not limit any functionality within NFD
and allows a simpler and more optimized implementation of the event mechanism.

If it is required to remove individual subscribers, you would need to modify the EventEmitter implementation or
use some other event subscription implementation.

9.6 Face Status Monitoring Helper

As described in Section 6, NFD provides a way to notify interested applications about the creation of new faces and destruction
of existing ones. This is required functionality for special applications that support NFD, in particular for RIB manager (to
remove stale records) and nfd-autoreg, providing automatic prefix registration when a new face is created as a response to
incoming TCP connection or UDP packet.

Generally, to obtain face status notifications, one needs to send out properly formatted Interests towards /localhost

/nfd/faces/events and continue re-expressing these Interests as soon as they are satisfied or timeout. To simplify these
operations, FaceMonitor class has been created. In order to receive face status notifications, an application needs to create
an object of this class and register a callback. After this, whenever a new face is created or destroyed, the specified callback
will be fired automatically with the argument that describes the event.

54

9.7 Global Scheduler 9 COMMON SERVICES

9.7 Global Scheduler

The ndn-cxx library includes a scheduler class that provides a simple way to schedule arbitrary events (callbacks) at arbitrary
time points. Normally, each module/class creates its own scheduler object. An implication of this is that a scheduled object,
when necessary, must be cancelled in a specific scheduler, otherwise the behavior is undefined.

NFD packet forwarding has a number of events with shared ownership of events. To simplify this and other event
operations, common services include a global scheduler. To use this scheduler, one needs to include core/scheduler.hpp,
after which new events can be scheduled using the scheduler::schedule free function. The scheduled event can then
be cancelled at any time by calling the scheduler::cancel function with the event id that was originally returned by
scheduler::schedule.

9.8 Global IO Service

The NFD packet forwarding implementation is based on Boost.Asio [6], which provides efficient asynchronous operations.
The main feature of this is the io_service abstraction. io_service implements the dispatch of any scheduled events in an
asynchronous manner, such as sending packets through Berkeley sockets, processing received packets and connections, and
many others including arbitrary function calls (e.g., scheduler class in ndn-cxx library is fully based on io_service).

Logically, io_service is just a queue of callbacks (explicitly or implicitly added). In order to actually execute any of these
callback functions, at least one processing thread should be created. This is accomplished by calling the io_service::run

method. The execution thread that called the run method then becomes such an execution thread and starts processing
enqueued callbacks in an application-defined manner. Note that any exceptions that will be thrown inside the enqueued
callbacks can be intercepted in the processing thread that called the run method on io_service object.

The current implementation of NFD uses a single global instance of io_service object with a single processing thread.
This thread is initiated from the main function (i.e., main function calls run method on the global io_service instance).

In some implementations of new NFD services, it may be required to specify a io_service object. For example, when
implementing TCP face, it is necessary to provide an io_service object as a constructor parameter to boost::asio::ip::

tcp::socket. In such cases, it is enough to include core/global-io.hpp header file and supply getGlobalIoService() as
the argument. The remainder will be handled by the existing NFD framework.

55

REFERENCES REFERENCES

References

[1] NDN Project Team, “NDN packet format specification (version 0.1),” http://named-data.net/doc/ndn-tlv/, 2014.

[2] ——, “NFD - Named Data Networking Forwarding Daemon (version 0.1.0),” Online: http://named-data.net/doc/NFD/
0.1.0/, 2014.

[3] ——, “NFD management protocol,” Online: http://redmine.named-data.net/projects/nfd/wiki/Management, 2014.

[4] ——, “Control command,” Online http://redmine.named-data.net/projects/nfd/wiki/ControlCommand, 2014.

[5] I. Fette and A. Melnikov, “The WebSocket protcol,” RFC 6455 http://tools.ietf.org/html/rfc6455, December 2011.

[6] C. Kohlhoff, “Boost.Asio,” Online: http://www.boost.org/doc/libs/1 48 0/doc/html/boost asio.html, 2003–2013.

[7] NDN Project Team, “NFD Local Control Header,” Online http://redmine.named-data.net/projects/nfd/wiki/
LocalControlHeader, 2014.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard, “Networking
named content,” in Proceedings of the 5th International Conference on Emerging Networking Experiments
and Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

[9] J. Shi, “Namespace-based scope control,” http://redmine.named-data.net/projects/nfd/wiki/ScopeControl.

[10] W. Pugh, Skip lists: A probabilistic alternative to balanced trees. Springer, 1989.

[11] Boost.MultiIndex Documentation. [Online]. Available: http://www.boost.org/doc/libs/1 55 0b1/libs/multi index/doc/
index.html

[12] Google, “The CityHash family of hash functions,” Online: https://code.google.com/p/cityhash/, 2011.

[13] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case for stateful forwarding
plane,” Computer Communications, vol. 36, no. 7, pp. 779–791, 2013, iSSN 0140-3664. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2013.01.005

[14] J. Shi, “ccnd 0.7.2 forwarding strategy,” http://redmine.named-data.net/projects/nfd/wiki/CcndStrategy, University of
Arizona, Tech. Rep., 2014.

[15] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest flooding attack and
countermeasures in Named Data Networking,” in Proc. of IFIP Networking 2013, May 2013. [Online]. Available:
http://networking2013.poly.edu/program-2/

[16] M. Kalicinski, “Boost.PropertyTree,” Online: http://www.boost.org/doc/libs/1 42 0/doc/html/property tree.html,
2008.

[17] Y. Yu, “NDN regular expression,” http://redmine.named-data.net/projects/ndn-cxx/wiki/Regex, 2014.

[18] ——, “Validator configuration file format,” http://redmine.named-data.net/projects/ndn-
cxx/wiki/CommandValidatorConf, 2014.

[19] NDN Project Team, “NDN-Cert,” Online: https://github.com/named-data/ndncert, 2014.

56

http://named-data.net/doc/NFD/0.1.0/
http://named-data.net/doc/NFD/0.1.0/
http://redmine.named-data.net/projects/nfd/wiki/Management
http://redmine.named-data.net/projects/nfd/wiki/ControlCommand
http://tools.ietf.org/html/rfc6455
http://www.boost.org/doc/libs/1_48_0/doc/html/boost_asio.html
http://redmine.named-data.net/projects/nfd/wiki/LocalControlHeader
http://redmine.named-data.net/projects/nfd/wiki/LocalControlHeader
http://doi.acm.org/10.1145/1658939.1658941
http://www.boost.org/doc/libs/1_55_0b1/libs/multi_index/doc/index.html
http://www.boost.org/doc/libs/1_55_0b1/libs/multi_index/doc/index.html
https://code.google.com/p/cityhash/
http://dx.doi.org/10.1016/j.comcom.2013.01.005
http://networking2013.poly.edu/program-2/
http://www.boost.org/doc/libs/1_42_0/doc/html/property_tree.html
https://github.com/named-data/ndncert

	Introduction
	NFD Modules
	How Packets are Processed in NFD
	How Management Interests are Processed in NFD

	Face System
	Face URI
	Protocol Factory Abstraction
	Channel Abstraction
	Face Abstraction
	WebSocket Face and Encapsulation of NDN Packet
	Extending NFD Face System

	Tables
	Forwarding Information Base (FIB)
	Structure and Semantics
	Usage

	Content Store (CS)
	Semantics and Usage
	Implementation

	Interest Table (PIT)
	PIT Entry
	PIT

	Dead Nonce List
	Structure, Semantics, and Usage
	Capacity Maintenance

	Strategy Choice Table
	Structure and Semantics
	Usage

	Measurements Table
	Structure
	Usage

	NameTree
	Structure
	Operations and Algorithms
	Shortcuts

	Forwarding
	Forwarding Pipelines
	Interest Processing Path
	Incoming Interest Pipeline
	Interest Loop Pipeline
	Outgoing Interest Pipeline
	Interest Reject Pipeline
	Interest Unsatisfied Pipeline
	Interest Finalize Pipeline

	Data Processing Path
	Incoming Data Pipeline
	Data Unsolicited Pipeline
	Outgoing Data Pipeline

	Forwarding Strategy
	Strategy API
	Triggers
	Actions
	Storage

	Built-in Strategies
	Best Route Strategy
	Broadcast Strategy
	Client Control Strategy
	NCC Strategy
	Access Router Strategy

	How to Develop a New Strategy
	Should I Develop a New Strategy?
	Develop a New Built-in Strategy

	Management
	Managers
	Face Manager
	FIB Manager
	Strategy Choice Manager
	Forwarder Status

	Management Support Classes
	Manager Base
	Internal Face
	Segment Publisher
	Notification Stream
	Command Validator
	General Configuration File Section Parser
	Tables Configuration File Section Parser

	RIB Management
	Initializing NRD
	Communicating with NRD
	Registering a Route
	Unregistering a Route

	RIB Entry
	Prefix Registration Flags
	Examples
	Cost Inheritance

	On Request
	Termination
	Extending RIB Manager

	Security
	Interface Control
	Trust Model
	Command Interest
	NFD Trust Model
	NRD Trust Model

	Common Services
	Configuration File
	User Info
	Developer Info

	Basic Logger
	User Info
	Developer Info

	Hash Computation Routines
	DNS Resolver
	Event Emitter
	Face Status Monitoring Helper
	Global Scheduler
	Global IO Service

	References

