
NDN specification Documentation
Release 0.1a2

NDN Project Team

March 27, 2014

Contents

1 Acknowledgment 2

2 Introduction 2

3 Type-Length-Value (TLV) Encoding 3
3.1 Variable Size Encoding for type (T) and length (L) . 3
3.2 TLV Encoding . 4
3.3 Non Negative Integer Encoding . 4
3.4 Changes from CCNx . 5

4 Name 5
4.1 NDN Name Format . 5
4.2 NDN URI Scheme . 5
4.3 Implicit Digest Component . 5
4.4 Canonical Order . 6
4.5 Changes from CCNx . 6

5 Interest Packet 6
5.1 Name . 7
5.2 Selectors . 7

MinSuffixComponents, MaxSuffixComponents . 7
PublisherPublicKeyLocator . 7
Exclude . 7
ChildSelector . 8
MustBeFresh . 8

5.3 Nonce . 8
5.4 Guiders . 9

Scope . 9
InterestLifetime . 9

5.5 Changes from CCNx . 9

6 Data Packet 10
6.1 Name . 10
6.2 MetaInfo . 10

ContentType . 10
FreshnessPeriod . 11
FinalBlockId . 11

6.3 Content . 11
6.4 Changes from CCNx . 11

7 Signature 12
7.1 SignatureType . 12

DigestSha256 . 12
SignatureSha256WithRsa . 12

7.2 KeyLocator . 13
7.3 Changes from CCNx . 13

8 Type value assignment 14
8.1 Type value reservations . 15

Bibliography 15

1 Acknowledgment

This NDN packet format specification is adapted from the CCNx specification described in
http://www.ccnx.org/releases/latest/doc/technical/index.html as of October 2013. However we have made a
number of packet format changes based on our deepened understanding about NDN design through experimentation
with NDN over the last three years, and based on the inputs from NDN research community at large. In particular,
this specification adopted a TLV encoding format that has been championed by cisco NDN project team. We list the
major protocol format changes from the CCNx specification at the end of each section.

2 Introduction

This version 0.1 specification aims to describe the NDN packet format only, a much narrower scope than a full NDN
protocol specification. Our plan is to circulate and finalize the packet format first, then write down the full protocol
specification.

In addition to this protocol specification draft, we are also in the process of putting out a set of technical memos that
document our reasoning behind the design choices of important issues. The first few to come out will address the
following issues:

• Packet fragmentation: end-to-end versus hop-by-hop;

• Understanding the tradeoffs of (not) handling Interest selectors;

• NDN Name discovery: why do we need it?

• NDN naming convention; and

• Scaling NDN routing.

In the rest of the document, we assume readers are familiar with how NDN/CCN works
in general. For a description of the current CCNx protocol definition, please refer to
http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html.

http://www.ccnx.org/releases/latest/doc/technical/index.html
http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html

3 Type-Length-Value (TLV) Encoding

Each NDN packet is encoded in a Type-Length-Value (TLV) format. NDN Interest and Data packets are distinguished
by the type value in the first and outmost TLV0.

An NDN packet is mainly a collection of TLVs inside TLV0. Some TLVs may contain sub-TLVs, and each sub-TLV
may also be further nested. A guiding design principle is to keep the order of TLVis deterministic, and keep the level
of nesting as small as possible to minimize both processing overhead and chances for errors.

Note that NDN packet format does not have a fixed packet header nor does it encode a protocol version number.
Instead the design uses the TLV format to provide the flexibility of adding new types and phasing out old types as the
protocol evolves over time. The absence of a fixed header makes it possible to support packets of very small sizes
efficiently, without the header overhead. There is also no packet fragmentation support at network level. Whenever
needed, NDN packets may be fragmented and reassembled hop-by-hop. 1

3.1 Variable Size Encoding for type (T) and length (L)

(Both the text below and that in TLV encoding section (page 4) are adopted from an earlier packet specification draft
by Mark Stapp)

To minimize the overhead during early deployment and to allow flexibility of future protocol extensions to meet
unforeseeable needs, both type (T) and length (L) take a variable size format. For implementation simplicity, both
type and length take the same encoding format.

We define a variable-length encoding for numbers in NDN as follows:

VAR-NUMBER := BYTE+

The first octet of the number either carries the actual numeric value, or signals that a multi-octet encoding is present,
as defined below:

• if the first octet is < 253, the number is encoded in that octet;

• if the first octet == 253, the number is encoded in the following 2 octets, in net byte-order;

• if the first octet == 254, the number is encoded in the following 4 octets, in net byte-order;

• if the first octet == 255, the number is encoded in the following 8 octets, in net byte-order.

One-octet value:

0 1 2 3 4 5 6 7
+---------------+
| < 253 = VALUE |
+---------------+

Two-octet value:

1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

+---------------+---------------+---------------+
| 253 | VALUE (MSB) VALUE (LSB) |
+---------------+---------------+---------------+

Four-octet value:

1 Today’s IP networks provide point-to-point packet delivery and perform end-to-end fragmentation. An NDN network, on the other hand, may
fetch requested data from any in-network storage, thus the notion of data flowing along an end-to-end path does not apply.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+----------------+--------------+
| 254 | VALUE (MSB) /
+---------------+---------------+----------------+--------------+
| VALUE (LSB) |
+---------------+

Eight-octet value:

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+----------------+--------------+
| 255 | VALUE (MSB) /
+---------------+ +
| /
+ +---------------+----------------+--------------+
| VALUE (LSB) |
+---------------+

3.2 TLV Encoding

TLV encoding for NDN pakcets is defined as follows:

NDN-TLV := TLV-TYPE TLV-LENGTH TLV-VALUE?
TLV-TYPE := VAR-NUMBER
TLV-LENGTH := VAR-NUMBER
TLV-VALUE := BYTE+

TLV-TYPE SHOULD be unique at all nested levels. The TLV Type number space and initial assignments will be
specified in the later revision of the current document. NDN packet design will try best to keep the length of T staying
with a single byte.

The TLV-LENGTH value represents number of bytes that TLV-VALUE uses. It does not include number of bytes that
TLV-TYPE and TLV-LENGTH fields themselves occupy. In particular, empty payload TLV will carry TLV-LENGTH
equal to 0.

This encoding offers a reasonable balance between compactness and flexibility. Most common, standardized Type
codes will be allocated from a small-integer number-space, and these common Types will be able to use the compact,
single-byte encoding.

3.3 Non Negative Integer Encoding

A number of TLV elements in NDN packet format take a non-negative integer as their value, with the following
definition:

nonNegativeInteger ::= BYTE+

Length value of the TLV element MUST be either 1, 2, 4, or 8. Depending on the length value, a nonNegativeInteger
is encoded as follows:

• if the length is 1 (i.e. the value length is 1 octet), the nonNegativeInteger is encoded in one octet;

• if the length is 2 (= value length is 2 octets), the nonNegativeInteger is encoded in 2 octets, in net byte-order;

• if the length is 4 (= value length is 4 octets), the nonNegativeInteger is encoded in 4 octets, in net byte-order;

• if the length is 8 (= value length is 8 octets), the nonNegativeInteger is encoded in 8 octets, in net byte-order.

The following shows a few examples of TLVs that has nonNegativeInteger as their value component in hexadecimal
format (where TT represents TLV-TYPE, followed by the TLV-LENGTH, then TLV-VALUE):

0 => TT0100
1 => TT0101
255 => TT01FF
256 => TT020100
65535 => TT02FFFF
65536 => TT0400010000

3.4 Changes from CCNx

• XML-based ccnb packet encoding is replaced by TLV encoding.

4 Name

An NDN Name is a hierarchical name for NDN content, which contains a sequence of name components.

4.1 NDN Name Format

We use a 2-level nested TLV to represent a name. The Type in the outer TLV indicates this is a Name. All inner TLVs
have the same Type indicating that they each contain a name component. There is no restriction on the Value field in
a name component and it may not contain any bytes:

Name ::= NAME-TYPE TLV-LENGTH NameComponent*
NameComponent ::= NAME-COMPONENT-TYPE TLV-LENGTH BYTE+

4.2 NDN URI Scheme

For textual representation, it is often convenient to use URI to represent NDN names. Please refer to RFC 3986 (URI
Generic Syntax) for background.

• The scheme identifier is ndn.

• When producing a URI from an NDN Name, only the generic URI unreserved characters are left unescaped.
These are the US-ASCII upper and lower case letters (A-Z, a-z), digits (0-9), and the four specials PLUS (+),
PERIOD (.), UNDERSCORE (_), and HYPHEN (-). All other characters are escaped using either the percent-
encoding method of the URI Generic Syntax or a ndn scheme specific hexadecimal string escape starting with
the EQUALS (=) and an even number of characters from the set of hex digits. Once an EQUALS has been
encountered in a component the hexadecimal encoding persists until the end of the component. The hex digits
in these escaped encodings should always use upper-case letters, i.e., A-Z.

• To unambiguously represent name components that would collide with the use of . and .. for relative URIs, any
component that consists solely of zero or more periods is encoded using three additional periods.

• The authority component (the part after the initial // in the familiar http and ftp URI schemes) is not relevant
to NDN. It should not be present, and it is ignored if it is present.

4.3 Implicit Digest Component

The Name of every piece of content includes as its final component a derived digest that ultimately makes the name
unique. This digest may occur in an Interest Name as an ordinary Component (the last one in the name). This final

component in the name is never included explicitly in the Data packet when it is transmitted on the wire. It can be
computed by any node based on the Data packet content.

The implicit digest component consists of the SHA-256 digest of the entire Data packet without the signature com-
ponent. Having this digest as the last name component enables us to achieve the following two goals:

• Identify one specific Data packet and no other.

• Exclude a specific Data packet in an Interest (independent from whether it has a valid signature).

4.4 Canonical Order

In several contexts in NDN packet processing, it is useful to have a consistent ordering of names and name components.
NDN names consist of a sequence of NameComponents, and each NameComponent is a sequence of zero or more
8-bit bytes. The ordering for components is such that:

• If a is shorter than b (i.e., has fewer bytes), then a comes before b.

• If a and b have the same length, then they are compared in ASCII lexicographic order (e.g., ordering based on
memcmp() operation.)

For Names, the ordering is just based on the ordering of the first component where they differ. If one name is a proper
prefix of the other, then it comes first.

4.5 Changes from CCNx

• The name encoding is changed from binary XML to TLV format.

• The discussions on naming conventions and the use of special markers inside NameComponents are removed
from packet specification, and will be covered by a separate technical document

• Deprecated zero-length name component.

5 Interest Packet

NDN Interest packet is TLV defined as follows:

Interest ::= INTEREST-TYPE TLV-LENGTH
Name
Selectors?
Nonce
Scope?
InterestLifetime?

Name and Nonce are the only two two required elements in an Interest packet. Selectors are optional elements that
further qualify Data that may match the Interest. They are used for discovering and selecting the Data that matches
best to what the application wants. Selectors are placed right after the Name to facilitate implementations that may
use continuous memory block of Name and Selectors TLVs together as the index for PIT lookup. By using a TLV to
group all the Selectors, an implementation can easily skip them to find Nonce, which is used together with Name to
identify looping Interests. If Selectors TLV is present in the Interest, it MUST contain at least one selector.

The two other optional elements, Scope and InterestLifetime, are referred to as Guiders. They affect Interest forward-
ing behavior, e.g., how far the Interest may be forwarded, and how long an Interest may be kept in the PIT. They are
not grouped.

5.1 Name

The Name element in an Interest is synonymous with the term prefix. See Name section (page 5) for details.

5.2 Selectors

Selectors ::= SELECTORS-TYPE TLV-LENGTH
MinSuffixComponents?
MaxSuffixComponents?
PublisherPublicKeyLocator?
Exclude?
ChildSelector?
MustBeFresh?

MinSuffixComponents, MaxSuffixComponents

MinSuffixComponents ::= MIN-SUFFIX-COMPONENTS-TYPE TLV-LENGTH
nonNegativeInteger

MaxSuffixComponents ::= MAX-SUFFIX-COMPONENTS-TYPE TLV-LENGTH
nonNegativeInteger

When needed, MinSuffixComponents and MaxSuffixComponents allow a data consumer to indicate
whether the Name in the Interest is the full name including the digest, or the full name except for the digest, or
the content it is seeking has a known range of legitimate component counts. These two parameters refer to the number
of name components beyond those in the prefix, and counting the implicit digest, that may occur in the matching Data.
The default for MinSuffixComponents is 0 and for MaxSuffixComponents is effectively infinite, meaning
that any Data whose name starts with the prefix is a match. Often only one of these will be needed to get the desired
effect.

PublisherPublicKeyLocator

PublisherPublicKeyLocator ::= KeyLocator

This element specifies the name of the key which is used to sign the Data packet that the consumer is requesting. This
is a way for the Interest to select answers from a particular publisher.

See KeyLocator (page 13) section for more detail.

Exclude

Exclude ::= EXCLUDE-TYPE TLV-LENGTH Any? (NameComponent (Any)?)+
Any ::= ANY-TYPE TLV-LENGTH(=0)

The Exclude selectors allows requester to specify list and/or ranges of names components that MUST NOT appear
as a continuation of the Name prefix in the responding Data packet to the Interest. For example, if Interest is expressed
for /ndn/edu and Exclude specifies one name component ucla, then nor data producer nor conforming NDN
routers are allowed to return any Data packet that has prefix /ndn/edu/ucla.

Exclude filter applies only to a name component of the Data packet name that is located at a position that numerically
equals to the number of name components in the Interest packet, assuming 0 is the first name component.

The Components in the exclusion list MUST occur in strictly increasing order according to the canonical NDN name
component ordering (Name Section (page 5)), with optional leading, trailing, and interleaved Any components. The
following defines processing of Any components:

• If none of the Any components are specified, the filter excludes only to the names specified in the Exclude list.

• If a leading Any component is specified, then the filter excludes all names that are smaller or equal (in NDN
name component canonical ordering) to the first NameComponent in the Exclude list.

• If a trailing Any component is specified, then the filter excludes all names that are larger or equal (in NDN name
component canonical ordering) to the last NameComponent in the Exclude list.

• If Any component is specified between two NameComponents in the list, then the filter excludes all names from
the range from the right NameComponent to the left NameComponent, including both ends.

Exclude filter MUST not consist of a single Any component or one NameComponent with leading and trailing Any
components.

ChildSelector

ChildSelector ::= CHILD-SELECTOR-TYPE TLV-LENGTH
nonNegativeInteger

Often a given Interest can match more than one Data within a given content store. The ChildSelector provides a
way of expressing a preference for which of these should be returned. If the value is 0, the leftmost child is preferred.
If 1, the rightmost child is preferred. Here leftmost and rightmost refer to the least and greatest components according
to the canonical NDN name component ordering (Name Section (page 5)). This ordering is only done at the level of
the name hierarchy one past the name prefix.

For example, assuming in the name hierarchy the component immediately after the name prefix is the version number,
whose next level is the segment number, then setting ChildSelector to be 1 will retrieve the rightmost version number
(i.e., the latest version) and the leftmost segment number (i.e., the first segment). However, this selection is only done
with respect to a single content store, not globally. Additional rounds that exclude the earlier versions may be used to
explore other content stores for newer versions. In this case, the use of ChildSelector does not change the multi-round
outcome, but it decreases the number of rounds needed to converge to an answer.

MustBeFresh

MustBeFresh ::= MUST-BE-FRESH-TYPE TLV-LENGTH(=0)

This selector is encoded with Type and Length but no Value part. When it is absent from an Interest packet, the router
can respond with a Data packet from its content store whose FreshnessPeriod is either still valid or expired. When it
is present in an Interest packet, the router should not return Data packet from its content store whose FreshnessPeriod
has expired.

The FreshnessPeriod carried in each Data packet (Data Section (page 10)) is set by the original producer. It starts
counting down when the Data packet arrives at a node. Consequently if a node is N hops away from the original
producer, it may not consider the Data stale until N X FreshnessPeriod after the Data is produced.

5.3 Nonce

Nonce defined as follows:

Nonce ::= NONCE-TYPE TLV-LENGTH(=4) BYTE{4}

The Nonce carries a randomly-genenerated 4-octet long byte-string. The combination of Name and Nonce should
uniquely identify an Interest packet. This is used to detect looping Interests.

5.4 Guiders

Scope

Scope ::= SCOPE-TYPE TLV-LENGTH nonNegativeInteger

This value limits how far the Interest may propagate. Scope 0 prevents propagation beyond the local NDN daemon
(even to other applications on the same host). Scope 1 limits propagation to the applications on the originating host.
Scope 2 limits propagation to no further than the next node. Other values are not defined at this time, and will cause
the Interest packet to be dropped.

Note that Scope is not a hop count—the value is not decremented as the Interest is forwarded.

InterestLifetime

InterestLifetime ::= INTEREST-LIFETIME-TYPE TLV-LENGTH nonNegativeInteger

InterestLifetime indicates the (approximate) time remaining before the Interest times out. The value is the
number of milliseconds. The timeout is relative to the arrival time of the Interest at the current node.

Nodes that forward Interests may decrease the lifetime to account for the time spent in the node before forwarding, but
are not required to do so. It is recommended that these adjustments be done only for relatively large delays (measured
in seconds).

It is the application that sets the value for InterestLifetime. If the InterestLifetime element is omitted,
a default value of 4 seconds is used (4000). The missing element may be added before forwarding.

5.5 Changes from CCNx

• Nonce is changed from optional to required.

• PublisherPublicKeyDigest is replaced by PublisherPublicKeyLocator.

• AnswerOriginKind is simplified from 4bits to a 1-bit MustBeFresh.

• FaceID has been removed.

• InterestLifetime changes the unit to the number of milliseconds.

• Removed Bloom Filter from Exclude.

• Changed default semantics of staleness.

Specifically, NDN-TLV Interest without any selectors will bring any data that matches the name, and only
when MustBeFresh selector is enabled it will try to honor freshness, specified in Data packets. With Bi-
nary XML encoded Interests, the default behavior was to bring “fresh” data and return “stale” data only when
AnswerOriginKind was set to 3.

Application developers must be aware of this change, reexamine the Interest expression code, and enable
MustBeFresh selector when necessary.

6 Data Packet

NDN Data packet is TLV defined as follows:

Data ::= DATA-TLV TLV-LENGTH
Name
MetaInfo
Content
Signature

The Data packet represents some arbitrary binary data (held in the Content element) together with its Name, some
additional bits of information (MetaInfo), and a digital Signature of the other three elements. The Name is the first
element since all NDN packet processing starts with the name. Signature is put at the end of the packet to ease the
implementation because signature computation covers all the elements before Signature.

6.1 Name

See Name section (page 5) for details.

6.2 MetaInfo

MetaInfo ::= META-INFO-TYPE TLV-LENGTH
ContentType?
FreshnessPeriod?
FinalBlockId?

Compared with CCNx, four fields are removed: PublisherPublicKeyDigest, ExtOpt, Timestamp, and FinalBlockID
for the following reasons.

• PublisherPublicKeyDigest is supposed to be used in selecting data packets signed by a particular key. We
replace PublisherPublicKeyDigest with KeyLocator, which is part of the Signature block (see Signature Section
(page 12)), due to the following consideration. First, it requires data consumer to acquire a valid public key, as
opposed to the key locator, before sending Interest out. Second, if a router is to verify the content objects, it
must have other means to locate the keys first. Further, it may require publishers to maintain their public keys
and certificates by their public key digests instead of names.

• ExtOpt was intended for extending XML-based ccnb format. Since we are now using TLV, ExtOpt is no longer
needed.

• Timestamp and FinalBlockID can be useful meta information for applications, but do not need to be processed
at the network layer. Therefore, if desired, applications should encode such meta information as part of the
content.

ContentType

ContentType ::= CONTENT-TYPE-TYPE TLV-LENGTH
nonNegativeInteger

Three ContentTypes are currently defined: default (=0), LINK (=1), and KEY (=2). The default type of content is a
BLOB (=0), which is the actual data bits identified by the data name. The textbf{LINK} type of content is another
name which identifies the actual data content. The KEY type of content is a public key.

Compared with CCNx, three types, ENCR, GONE, and NACK are removed. ENCR means the content is encrypted,
and since the network layer should not care whether content is encrypted or not, this type is not needed. GONE was a
placeholder for implementing cache purging, however the research is yet to be carried out on how to accomplish this

goal, if it is feasible to achieve, it is not included in this 0.1 version of NDN specification. NACK is used to signal
a downstream node that the upstream node is unable to retrieve a matching data. Since the actual NACK mechanism
is still under active investigation, we do not include it in this version of specification, but may add it back in a future
version.

FreshnessPeriod

FreshnessPeriod ::= FRESHNESS-PERIOD-TLV TLV-LENGTH
nonNegativeInteger

The optional FreshnessPeriod indicates how long a node should wait after the arrival of this data before marking it
as stale. The encoded value is number of milliseconds. Note that the stale data is still valid data; the expiration of
FreshnessPeriod only means that the producer may have produced newer data.

Each content store associates every piece of Data with a staleness bit. The initial setting of this bit for newly-arrived
content is “not stale”. If the Data carries FreshnessPeriod, then after the Data has been residing in the content store for
FreshnessPeriod, it will be marked as stale. This is per object staleness and local to the NDN node. Another possible
way to set the staleness bit of a local content is for a local client to send a command to the local NDN daemon.

If an Interest contains MustBeFresh TLV, a Data that has the staleness bit set is not eligible to be sent in response to
that Interest. The effect is the same as if that stale Data did not exist (i.e., the Interest might be matched by some other
Data in the store, or, failing that, get forwarded to other nodes). If an exact duplicate of a stale Data arrives, the effect
is the same as if the stale Data had not been present. In particular, the Data in the store is no longer stale. As a practical
matter, a stale Data should be ranked high on the list of things to discard from the store when a storage quota has been
reached.

FinalBlockId

FinalBlockId ::= FINAL-BLOCK-ID-TLV TLV-LENGTH
NameComponent

The optional FinalBlockId indicates the identifier of the final block in a sequence of fragments. It should be present in
the final block itself, and may also be present in other fragments to provide advanced warning of the end to consumers.
The value here should be equal to the last explicit Name Component of the final block.

6.3 Content

Content ::= CONTENT-TYPE TLV-LENGTH BYTE*

6.4 Changes from CCNx

• The structure of Data packet is changed.

• SignedInfo is renamed to MetaInfo and its content is changed.

• PublisherPublicKeyDigest and ExtOpt are removed.

• Timestamp and FinalBlockID are removed.

• KeyLocator is moved to be inside the Signature block.

• Three content types, ENCR, GONE, and NACK are removed.

• FreshnessSeconds is renamed to FreshnessPeriod and is expressed in units of milliseconds.

7 Signature

NDN Signature is defined as two consecutive TLV blocks: SignatureInfo and SignatureValue. The follow-
ing general considerations about SignatureInfo and SignatureValue blocks that apply for all signature types:

1. SignatureInfo is included in signature calculation and fully describes the signature, signature algorithm,
and any other relevant information to obtain parent certificate(s), such as KeyLocator (page 13)

2. SignatureValue is excluded from signature calculation and represent actual bits of the signature and any
other supporting signature material.

Signature ::= SignatureInfo
SignatureBits

SignatureInfo ::= SIGNATURE-INFO-TYPE TLV-LENGTH
SignatureType
... (SignatureType-specific TLVs)

SignatureValue ::= SIGNATURE-VALUE-TYPE TLV-LENGTH
... (SignatureType-specific TLVs and
BYTE+

7.1 SignatureType

SignatureType ::= SIGNATURE-TYPE-TYPE TLV-LENGTH
nonNegativeInteger

This specification defines the following SignatureType values:

Value Reference Description
0 DigestSha256 (page 12) Integrity protection using SHA-256 digest
1 SignatureSha256WithRsa

(page 12)
Integrity and provenance protection using RSA signature over a
SHA-256 digest

2-200 reserved for future assignments
>200 unassigned

DigestSha256

DigestSha256 provides no provenance of a Data packet or any kind of guarantee that packet is from the original
source. This signature type is indended only for debug purposes and limited circumstances when it is necessary to
protect only against unexpected modification during the transmition.

DigestSha256 is defined as a SHA256 hash of the Name (page 5), MetaInfo (page 10), Content (page 11), and
SignatureInfo (page 12) TLVs:

SignatureInfo ::= SIGNATURE-INFO-TYPE TLV-LENGTH(=3)
SIGNATURE-TYPE-TYPE TLV-LENGTH(=1) 0

SignatureValue ::= SIGNATURE-VALUE-TYPE TLV-LENGTH(=32)
BYTE+(=SHA256{Name, MetaInfo, Content, SignatureInfo})

SignatureSha256WithRsa

SignatureSha256WithRsa is the basic signature algorithm that MUST be supported by any NDN-compliant
software. As suggested by the name, it defines an RSA public key signature that is calculated over SHA256 hash of

the Name (page 5), MetaInfo (page 10), Content (page 11), and SignatureInfo (page 12) TLVs.

SignatureInfo ::= SIGNATURE-INFO-TYPE TLV-LENGTH
SIGNATURE-TYPE-TYPE TLV-LENGTH(=1) 1
KeyLocator

SignatureValue ::= SIGNATURE-VALUE-TYPE TLV-LENGTH
BYTE+(=RSA over SHA256{Name, MetaInfo, Content, SignatureInfo})

Note: SignatureValue size varies (typically 128 or 256 bytes) depending on the private key length used during the
signing process.

This type of signature ensures strict provenance of a Data packet, provided that the signature verifies and signature
issuer is authorized to sign the Data packet. The signature issuer is idenfified using KeyLocator (page 13) block in
SignatureInfo (page 12) block of SignatureSha256WithRsa. See KeyLocator section (page 13) for more detail.

Note: It is application’s responsibility to define rules (trust model) of when a specific issuer (KeyLocator) is autho-
rized to sign a specific Data packet. While trust model is outside the scope of the current specification, generally, trust
model needs to specify authorization rules between KeyName and Data packet Name, as well as clearly define trust
anchor(s). For example, an application can elect to use hierarchical trust model [1] (page 15) to ensure Data integrity
and provenance.

7.2 KeyLocator

A KeyLocator specifies a name that points to another Data packet containing certificate or public key, or can be
used by the specific trust model in another way to verify the the content.

KeyLocator ::= KEY-LOCATOR-TYPE TLV-LENGTH KeyLocatorValue

KeyLocatorValue ::= Name |
KeyLocatorDigest |
...

KeyLocatorDigest ::= KEY-LOCATOR-DIGEST-TYPE TLV-LENGTH BYTE+

Note: KeyLocator has meaning only for specific trust model and the current specification does not imply or suggest
use of any specific trust model. Generally, KeyLocator should point to another Data packet which is interpreted by the
trust model, but trust model can allow alternative forms of the KeyLocator.

For example, one can define a trust model that does not interpret KeyLocator at all (KeyLocator MUST be present,
but TLV-LENGTH could be 0) and uses naming conventions to infer proper public key or public key certificate for
the name of the Data packet itself. Another possibility for the trust model is to define digest-based KeyLocatorValue
(KeyLocatorDigest), where RSA public key will be identified using SHA256 digest, assuming that the trust
model has some other means to obtain the public key.

7.3 Changes from CCNx

• Signature is moved to the end of Data packet.

• KeyLocator is moved to be a part of the SignatureInfo block, if it is applicable for the specific signature
type. The rationale for the move is to make Signature (sequence of SignatureInfo and SignatureValue
TLVs) self-contained and self-sufficient.

• Signature type (or signing method information) is expressed as an assigned integer value (with no assumed
default), rather than OID.

• Added support for cheaper signatures

• The current specification does not define Merkle Hash Tree Aggregated Signatures, but it is expected that such
(or similar) signatures will be defined in future version of this specification.

8 Type value assignment

Type Assigned value (decimal) Assigned value (hexadecimal)
Packet types
Interest 5 0x05
Data 6 0x06
Common fields
Name 7 0x07
NameComponent 8 0x08
Interest packet
Selectors 9 0x09
Nonce 10 0x0a
Scope 11 0x0b
InterestLifetime 12 0x0c
Interest/Selectors
MinSuffixComponents 13 0x0d
MaxSuffixComponents 14 0x0e
PublisherPublicKeyLocator 15 0x0f
Exclude 16 0x10
ChildSelector 17 0x11
MustBeFresh 18 0x12
Any 19 0x13
Data packet
MetaInfo 20 0x14
Content 21 0x15
SignatureInfo 22 0x16
SignatureValue 23 0x17
Data/MetaInfo
ContentType 24 0x18
FreshnessPeriod 25 0x19
FinalBlockId 26 0x1a
Data/Signature
SignatureType 27 0x1b
KeyLocator 28 0x1c
KeyLocatorDigest 29 0x1d

8.1 Type value reservations

Val-
ues

Designation

0-4,
30-79

Reserved for future assignments (1-byte encoding)

80-
100

Reserved for assignments related to local link data processing (NDNLP header
(http://redmine.named-data.net/projects/nfd/wiki/NDNLP-TLV), LocalControlHeader
(http://redmine.named-data.net/projects/nfd/wiki/LocalControlHeader), etc.)

101-
127

Reserved for assignments related to forwarding daemon

128-
252

For application use (1-byte encoding)

253-
32767

Reserved for future assignments (3-byte encoding)

>32767 For application use (3-byte encoding)

References

[1] Chaoyi Bian, Zhenkai Zhu, Alexander Afanasyev, Ersin Uzun, and Lixia Zhang. Deploying key man-
agement on NDN testbed. Technical Report NDN-0009, Revision 2, NDN, February 2013. http://named-
data.net/techreports.html.

http://redmine.named-data.net/projects/nfd/wiki/NDNLP-TLV
http://redmine.named-data.net/projects/nfd/wiki/LocalControlHeader
http://named-data.net/techreports.html
http://named-data.net/techreports.html

	Acknowledgment
	Introduction
	Type-Length-Value (TLV) Encoding
	Variable Size Encoding for type (T) and length (L)
	TLV Encoding
	Non Negative Integer Encoding
	Changes from CCNx

	Name
	NDN Name Format
	NDN URI Scheme
	Implicit Digest Component
	Canonical Order
	Changes from CCNx

	Interest Packet
	Name
	Selectors
	MinSuffixComponents, MaxSuffixComponents
	PublisherPublicKeyLocator
	Exclude
	ChildSelector
	MustBeFresh

	Nonce
	Guiders
	Scope
	InterestLifetime

	Changes from CCNx

	Data Packet
	Name
	MetaInfo
	ContentType
	FreshnessPeriod
	FinalBlockId

	Content
	Changes from CCNx

	Signature
	SignatureType
	DigestSha256
	SignatureSha256WithRsa

	KeyLocator
	Changes from CCNx

	Type value assignment
	Type value reservations

	Bibliography

